

CapCam: Enabling Quick, Ad-Hoc, Position-Tracked
Interactions Between Devices

Robert Xiao Scott Hudson Chris Harrison
Carnegie Mellon University, Human-Computer Interaction Institute

5000 Forbes Avenue, Pittsburgh, PA 15213
{brx, scott.hudson, chris.harrison}@cs.cmu.edu

ABSTRACT
We present CapCam, a novel technique that enables
smartphones (and similar devices) to establish quick, ad-
hoc connections with a host touchscreen device, simply by
pressing a device to the screen’s surface. Pairing data, used
to bootstrap a conventional wireless connection, is trans-
mitted optically to the phone’s rear camera. This approach
utilizes the near-ubiquitous rear camera on smart devices,
making it applicable to a wide range of devices, both new
and old. CapCam also tracks phones’ physical positions on
the host capacitive touchscreen without any instrumenta-
tion, enabling a wide range of targeted interactions. We
quantify the communication performance of our pairing
approach and demonstrate data transmission rates up to
four times faster than prior camera-based techniques. To
demonstrate the unique capability and utility of our system,
we built a series of example applications, highlighting dif-
ferent interaction techniques CapCam enables.

Author Keywords
Large displays; ad-hoc connections; capacitive sensing;
device pairing; cross-device interaction.
ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User interfaces: Input devices and strategies.

INTRODUCTION
Large touchscreen displays, such as public kiosks, digital
whiteboards and interactive tabletops have become increas-
ingly popular as prices have fallen. Similarly, mobile de-
vices, such as smartphones and tablets, have achieved
ubiquity. While such devices are reasonably smart on their
own, cross-device interactions hold much promise for mak-
ing interactive experiences even more powerful [14].

However, interacting across devices is rarely straightfor-
ward. Although many mobile devices support e.g., Blue-
tooth pairing, such pairing options are generally time-
consuming and cumbersome (i.e., on the order of 5 se-
conds, see Table 1). Often, users must confirm or manually
enter connection parameters (e.g., device, network identifi-
er) and security parameters (e.g., PIN) [27]. Short-range
NFC, an emerging technology, aims to mitigate many of
these issues. However, it requires specific hardware on both
devices, and more importantly, only indicates device pres-
ence, not position (unless receivers are tiled into an matrix
[35] or combined with another method, like optical fiducial
tags [1]). Thus, it only allows for coarse device-to-device
pairing, precluding metadata such as spatial position and
rotation of devices, as well as rich multi-device experienc-
es. Moreover, NFC is not commonly available on larger
devices, such as laptops, tablets, and interactive surfaces –
the class of surfaces we chiefly target.

CAPCAM
In this work, we describe CapCam, a new technique that
provides rapid, ad-hoc connections between two devices.
CapCam pairs a “cap” device with a capacitive touchscreen
to a “cam” device with a camera sensor (Figure 1A). For
example, typical smartphones and tablets can be paired
with each other, and these devices can be paired to even
larger touchscreens, such as smart whiteboards and

A B C D E F

id=17, x=200, y=174, a=15°, ... time ... rx/tx

CM

Figure 1. A: CapCam is used to pair two devices, a “cap” device (background is a large touchscreen display) and a “cam” de-
vice (here, a smartphone). B: The phone is pressed to the display. C: The phone body creates a characteristic signal on the
touchscreen’s capacitive sensor. D: CapCam extracts the shape, position and orientation of the phone from this capacitive im-
age. E: CapCam encodes pairing data (e.g., IP, port and password) as a flashing color pattern, rendered beneath the phone
body. F: The phone’s rear camera captures the pattern, and uses it to establish a conventional two-way wireless link (e.g.,
WiFi). With both devices paired and communicating, interactive applications can be launched, such as this virtual keyboard.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISS '16, November 06-09, 2016, Niagara Falls, ON, Canada
© 2016 ACM. ISBN 978-1-4503-4248-3/16/11�$15.00
DOI: http://dx.doi.org/10.1145/2992154.2992182

touchscreen monitors. CapCam uses the cap device’s
touchscreen to detect and track the cam device (Figure 1, C
and D), and renders color-modulated pairing data that is
captured by the cam device’s rear camera (Figure 1E).

This pairing data contains configuration information neces-
sary to establish a bidirectional link (e.g., IP address, port
and password). In this way, CapCam provides a unidirec-
tional communication mechanism from the touchscreen to
the camera, which is then used to bootstrap a full bidirec-
tional, high-speed link (Figure 1F). Because CapCam also
provides precise, continuous spatial tracking, we can enable
rich synergistic applications utilizing both (or many) devic-
es at once.

Overall, we believe CapCam exhibits six desirable proper-
ties – it enables zero-configuration pairing via automatical-
ly transmitted pairing codes; it is rapid, capable of estab-
lishing links in roughly one second; anonymous, in that it
requires no identifying information to be exchanged; pair-
ing is explicitly initiated by users through a purposeful
pressing of a device to a host screen; it enables targeted
interactions on said screen via position tracking; and, it
allows for multiple devices to be paired and used on the
same cap device simultaneously.

Although many prior systems have independently ad-
dressed pairing or spatial interaction, few have combined
these into a single system. CapCam provides both pairing
and spatial interaction as phases of a single interactive
transaction, enabling rapid, ad hoc interactions, e.g,. walk-
ing up to a public display and initiating rich, spatial interac-
tions nearly instantaneously.

In addition to describing our CapCam implementation, we
also offer several applications and interactions enabled by
our technique. We further contribute an evaluation of the
technical aspects of our approach, including pairing laten-
cy, pairing code bandwidth and bit error rate across three
exemplary devices.

RELATED WORK
CapCam intersects with several distinct areas of the litera-
ture, which we now review.

Device Pairing Interactions
Interaction techniques for establishing an ad hoc connec-
tion between devices in a convenient but secure fashion
have been proposed in a large number of research systems.
Chong et al. provide a survey of systems in [9] and review
relevant usability factors in [8]. Systems differ in terms of
the actions users must undertake to establish an association
between devices: using e.g., pre-shared codes [20], simple
placement of a phone in view of a camera on a specially
augmented surface [37], gestures performed by the user
with a mobile device [15, 25], or synchronous motion, vi-
bration or other input on two devices [6, 13, 14, 15, 24, 28],
among others.

Pairing Techniques using Optical Communication
A number of systems have explored optical transmission
methods for device pairing [21, 26, 30, 31, 37]. Several use
color encoding, e.g., [22] which uses hue differentials for
coding; [38], which exploits the rolling-shutter effect to
present imperceptible visual tags; and [12, 34], which use
color transitions for coding. However, only one prior sys-
tem, FlashLight [12] has demonstrated optical transmission
of data between a display (a diffuse illumination touch ta-
ble) and a coupled phone.

Augmenting Interactions Using Spatial Tracking
A phone or other device with knowledge of its spatial loca-
tion can be used as an auxiliary input and/or display device
to augment interaction on a larger device (see e.g., [17, 19,
23, 36]). For example, it could be used as a magic lens [2],
providing physical detail+context [29], or as a peephole
display [39] in a larger context. Other systems use special-
ly-designed tangible widgets which can be tracked and
identified by a capacitive touchscreen, e.g., TUIC [40] and
CapStones and ZebraWidgets [7]. The phone’s camera can
also be used to infer the phone’s position relative to a re-
mote display, to enable various interactions [3, 4].

One exemplary system is PhoneTouch [32, 33], which lets
users tap a phone onto a display surface and perform tar-
geted interactions. This is achieved by merging two dispar-
ate events: an impact registered by the phone’s accelerome-
ter and the appearance of a new blob on an FTIR display.

Method Pair Time Notes
Bluetooth 4.8 sec

(SD 2.5)
Starting from Bluetooth config screen of smartphone with device already in discoverable mode. Mean of: Hyundai Elantra
(2012), Samsung HM3500 Headset, Plantronics BackBeat 903 headset, Beats Studio Wireless headset.

Wifi WPS 5.1 sec
(SD 1.3)

Starting in WiFi settings of smartphone, from moment of WPS button press. Mean of: LinkSys E3200 router, MyQ Garage
door opener, Technicolor 582n router, D-Link N300 router.

NFC 1.3 sec
(SD 0.3)

With item to send or NFC application already open, from time to tap devices together to time of visible response (“beam”
prompt, notification, etc.). Mean of: Nexus 7, LG NFC Tag, WhizTag, Sony Xperia Z, Samsung Galaxy Nexus.

FlashLight [12] 2.64 sec
(Tx only)

Pairing data transmission time alone, calculated from the paper. 100 ms camera synchronization time, plus 84-bit payload at
33 bits/sec (the highest throughput achievable without significant error). Data rate assumes error correction is not needed.

BlueTable [37] 3 sec
(Tx only)

Pairing data transmission time alone, calculated using the statistics quoted in the paper. This system transmits 8-bit pairing
codes at 2.67 bits/sec.

CapCam 1.21 sec
(SD 0.1)

With app open, from time to tap Cam device to time of visible Cap device response (including network connection over-
head). 84-bit message + 42 additional ECC bits. Time measured using worst-performing device (Microsoft Surface). 0.83
seconds to transmit the 126-bit pairing packet alone (for comparison with FlashLight and BlueTable). See also Video Figure.

Table 1. Informal comparison of different pairing methods.

This requires devices to be pre-paired and have synchro-
nized clocks. Similarly, the Thaw system [18] uses a hue
encoding technique to encode x-y positions on a display,
which can be interpreted by the camera of a pre-paired
phone. As previously mentioned, NFC pairs one device to
another, without fine grain targeting. In response, Touch &
Select [35] uses a special grid of NFC tags operating be-
hind the display to provide rough position tracking of a
phone while using NFC. Finally, Echtler et al. [10] use a
camera-driven interactive table to recognize devices based
on the shadows they cast, and combine this with Bluetooth
signal strength to establish a connection, thus requiring no
modification to e.g., smartphones.

Closely Related Systems
A few systems deserve special mention for their proximity
to the present work. BlueTable [37] tracks phones on a sur-
face using an overhead camera, and pairs with them via
infrared flashes from the IrDA transceiver. BlueTable was
able to transfer data at 2.67 bits per second using binary
encoding. FlashLight [12] is a system that transmits pairing
data from a diffuse illumination touch table to a phone rest-
ing on it; a basic color transition scheme is used to transmit
approximately one bit per frame to the phone’s camera,
achieving a transmission rate of 33 bits per second.

In contrast to these systems, CapCam is the first to use
commodity, off-the-shelf capacitive touchscreens, meaning
our technique is immediately portable to most touchscreen
devices today (as opposed to optical touch tables used in
e.g., [10, 37]). Additionally, CapCam offers significantly
higher data transmission rates – up to 150 bits per second –
allowing for almost instant pairing. Table 1 offers findings
from an informal comparison of commercial systems,
BlueTable and FlashLight. Beyond offering competitive
pairing ease and speed, CapCam also significantly extends
prior work with respect to our exploration of the interac-
tions enabled; please also see our Video Figure.

IMPLEMENTATION
The cap device in CapCam can be any capacitive touch-
screen device, ranging from large public kiosks to small
mobile phones. To demonstrate this range, we used several
different off-the-shelf, consumer devices for development
and testing. Importantly, these devices represent a wide
range of sizes and pixel densities.

Smartphone – We used a stock Nexus 5 running Android
5.0.1, which features a 5” diagonal screen with a resolution
of 1080x1920 pixels (445 pixels per inch) running at
60 fps, and a touchscreen update rate of 120 Hz.

Laptop – Laptops increasingly feature touchscreens, and so
we chose a laptop as our second display platform. In order
to directly compare transmission performance with Flash-
Light [12], we use a MacBook Pro. Because this particular
computer lacks a touchscreen, we only evaluated data
transmission rates with this device. The MacBook has a 15”
screen with a resolution of 2880x1800 pixels (220 PPI)
running at 60 fps.

Large Interactive Surface – As a demonstration of large
CapCam-enabled interactions, we use a 55” Microsoft Sur-
face touchscreen display, with a resolution of 1920x1080
pixels (40 PPI) at 60 Hz. The touchscreen has an update
rate of 120 Hz.

Cam Device
As an example cam device, we used an unmodified Nexus
5 smartphone running Android 5.0.1. Android 5 provides
low-level control over many parameters of the phone’s
camera, enabling specialized imaging applications like
ours. Specifically, it allows full-manual control over shutter
speed, exposure, focus and color compensation. Although
few devices currently support this full-control API, the un-
derlying features are present on nearly all image sensors at
a low level (readily available to system integrators and
hardware manufacturers).

Despite our control over the camera’s focus parameters, the
images are nonetheless blurred because the camera cannot
focus at such short distances. We use the camera in manu-
al-control video mode, which provides 640x480 resolution
images at 30 FPS.

Figure 2. A hand and smartphone resting on our Mi-
crosoft Surface display. The capacitive image is seen above
(offset vertically for illustrative purposes).

Figure 3. Capacitive images from our Nexus 5 smartphone
showing the signal obtained from finger touches (left) and
a phone contact (right). The camera ring of the contacting
phone is visible at right. For illustrative purposes, the sig-
nal is offset vertically to avoid occlusion.

Capacitive Image Processing and Tracking
Capacitive touchscreens function by sensing changes in the
electric field near the surface of the display. Typically, the
field is sensed at points on a regularly-spaced electrode
grid, resulting in a low-resolution “capacitive image”. The
touch controller processes this image internally to extract
touch data (most typically, the X/Y position of touch con-
tacts), which is then passed up to the operating system.

Most touch controllers, however, offer a “debug” interface
that enables the complete capacitive image to be retrieved.
On the Nexus 5 smartphone, we modified the Linux kernel
to provide access to the Synaptics S3350 touch controller’s
capacitive image (a capability previously exploited in e.g.,
CapAuth [11] and BodyPrint [16]). On the Microsoft Sur-
face display, we developed a user-space USB driver for OS
X integrated into the cap application, which retrieves the
image over the USB connection. We use the raw capacitive
image (Figures 2 and 3) produced by the touchscreen con-
troller to implement our own tracking algorithms, which we
designed for finding phones and touches simultaneously
(Figure 4 and Video Figure).

On our large interactive display, we find phones by track-
ing the rectangular capacitive imprint (Figure 2, right).
When a phone is placed on the surface, the phone creates a
characteristic electric field disturbance under the entire area
of the phone. Although the capacitive measurement of the
phone is generally lower than that of fingers, the noise level
of the Microsoft Surface display precludes using a simple
threshold approach. Instead, we use a connected compo-
nents algorithm to detect blobs in the image. The blob size
is used to determine whether the blob represents a phone or
a finger touch. A natural consequence of this simple ap-
proach is that large touch contacts, such as palms, may also
be recognized as “phones”. However, since non-cam-

device contacts will not pair with the screen, they can be
rejected quickly.

For phones, we then fit a rectangle to the contact blob to
extract the approximate bounding box of the phone (Figure
4). To obtain the phone’s angle, the algorithm selects the
orientation angle that minimizes the bounding box size.
After the phone establishes a connection with the display, it
can optionally transmit its physical dimensions to the dis-
play to enable more precise tracking.

On the Nexus 5 smartphone, the touchscreen controller’s
built-in auto-calibration feature, which integrates large,
weak capacitive blobs into the background profile over
time, precluded us from similarly tracking the body of the
other phone. Consequently, we track other phones (i.e.,
cam devices) by identifying and tracking the metallic ring
that often surrounds camera modules (seen in Figure 3,
right). We use a connected-components algorithm (flood
fill algorithm) to locate the ring, and distinguish it from
fingers by comparing the maximum signal value against a
threshold – the capacitive measurement of the ring is sig-
nificantly lower than any finger.

Of note, the lower resolution of our Surface’s touchscreen
prevents us from reliably segmenting the camera module
from the rest of the phone’s blob. Instead, we treat any con-
tact point inside the phone’s area as a potential camera. In
order to accurately discern the camera’s position, we vary
the pairing data (e.g., using different passcodes) rendered
beneath the phone by position (e.g., quadrants) – the unique
pairing data that eventually connects thus reveals the cam-
era location. As camera modules are almost always located
at the top of devices, we can further infer the orientation of
devices (Figure 4, top left corner denoted with a circle).

Transmitting the Pairing Data
We encode pairing data as visible light beneath the device.
Pairing data is encoded into sequential frames, where each
frame consists of a color. Thus, the pairing data appears
visually as a series of flashing solid colors on the display
(see Video Figure). To match the frame rate of the camera,
the frames are transmitted at 30 Hz (thus, when displayed
at 60 Hz we simply repeat each color frame twice).

Each packet of pairing data begins with a three-frame
header, consisting of one frame each of solid green, red and
blue (Figure 5). This sequence is highly unlikely to occur in
the wild or at random, especially at precisely 30 Hz, and so
it neatly delineates packets. Furthermore, as we describe
later, this known and “pure-color” header data is used to
automatically color calibrate the camera to the particular
display for improved payload decoding.

Figure 4. Multiple devices (of many models) simultaneous-
ly tracked on the Microsoft screen by our algorithm. Rec-
tangles display the recognized phone’s shape, orientation
and position. A red line denotes a device’s x-axis; the up-
per-left corner is marked with a hollow circle.

Figure 5. A sample packet as encoded by the display. The packet starts with a three-frame green-red-blue header, followed by
21 color frames containing 6 bits each (using 4 color levels per channel). The raw transmitted bits are noted below each frame.

Following the header, the pairing data is encoded into the
RGB color values of each frame (Figure 5), depending on
the number of color levels configured. For example, if we
use 4 color levels per channel (e.g., color channel values of
0, 85, 170, and 255), then each color channel encodes 2 bits
of data (00, 01, 10 and 11 respectively). Since we can inde-
pendently manipulate R, G and B output on the display,
each frame encodes 6 bits. Using this scheme, a 162-bit
message can be transmitted in one second (30 frames total,
three header frames plus 27 data frames). Increasing the
number of levels per channel provides higher theoretical
throughput, but also raises the error rate. Consequently, the
number of levels should be chosen to optimize the error-
corrected bit rate (Figure 9).

Modern operating systems perform sophisticated color cor-
rection to match display characteristics with human percep-
tion. These color corrections include gamma corrections,
chromatic shifts, white-point adjustments, and gross bright-
ness/contrast control. Although these are useful for present-
ing accurate colors to humans, they cause unpredictable
changes in the displayed color data across monitors. We
therefore bypass these color correction algorithms by speci-
fying that our color data is pre-corrected to the sRGB color
space, thus allowing us to display “raw” RGB values.

As LCD displays vary in emission spectra and brightness,
there will still be a color mismatch between the display and
the camera. We use our GRB packet header (Figures 5 and

6) to calibrate the camera, computing a color-calibration
matrix that reduces the observed cross-talk between differ-
ent channels and normalizes the sensitivity of the camera’s
response to each channel. After this correction, there is still
some residual noise, for example, some LCD displays ex-
hibit slow switching times, resulting in intermediate color
values being received by the camera. Because of this, some
level of error correction is required to accurately transmit
packets. Furthermore, these effects may reduce the number
of usable color levels per channel.

Capturing the Connection String with the Camera
Our example displays all have a refresh rate of 60 Hz, accu-
rate to within fractions of a Hz. Due to the rolling shutter
on the phone’s camera (true for most cameras used in
smartphones), the camera frame will usually contain part of
one display frame, the vertical blanking interval, and part
of the next display frame (Figure 6). The point in the image
at which the blanking interval appears will move as the
camera moves in and out of sync with the display. If the
break moves across the image too quickly, the captured
frames will skip or lag with respect to the display, invali-
dating the received data.

Thus, we configure the phone’s shutter speed so that it cap-
tures frames as close to 30 Hz as possible, by setting the
sensor frame duration as close to 33.3 ms as the hardware
will allow. On the Nexus 5, we can do so to within 0.3 Hz
(33.1 ms), so that the blanking interval moves at most 1/3
of the camera frame per second. This is sufficiently stable
for our use. We used the same camera settings for all
smartphones and cap devices.

Figure 7. Raw bit error rate (% of bits flipped)

as a function of color level density.

Figure 6. Two consecutive camera frames captured by our
Nexus 5, showing our GRB packet header (Figure 5). Im-
age rows are captured sequentially in time due to the roll-
ing shutter. Left: the green header frame, followed by the
start of the red frame. Right: the next frame shows the end
of the red frame and the start of the blue frame. White dots
represent the sampling points used to extract the packet.

.

Figure 9. Effective payload data transmission rate as a
function of color level density, after applying the error cor-
rection necessary for a target packet loss rate of 1%.

Figure 8. Percentage of 126-bit packet needed for error
correction to attain a packet loss rate of 1%, as a function
of color level density.

On the cam device, we select eight sample points across the
height of the camera frame (Figure 6, white dots). At each
sample point, we attempt to decode the observed color se-
quence as a packet. Because we synchronize closely to the
display’s frame rate, there will be at least one sample point
that is not affected by the rolling shutter break for the dura-
tion of the transmission, allowing that sample point to re-
ceive the message and decode it successfully.

Connection Creation
Once the cam device receives and decodes the pairing data
packet, it initiates a connection to the display. In our proof-
of-concept implementation, the connection is made over
WiFi, though any wireless protocol could be used (e.g.,
cellular). The pairing data contains all data necessary to
establish this connection. For example, it could contain a
Bluetooth hardware address and PIN, a WiFi ad-hoc
BSSID and WPA2 key, or an IP address and port if the
devices are on a shared network (e.g., cellular network or
WiFi access point). The pairing data packet also contains a
one-time use passcode (i.e., nonce), which further identifies
the cam device to the cap device.

Error Correction
Due to inherent noise and non-uniformity in the camera
hardware, color space differences, and LCD imperfections,
some level of error correction is needed to ensure reliable
data transmission. In our implementation, we employ a
BCH error-correcting code [5] appended to each transmit-

ted packet. The precise code configuration used can be op-
timized based on the capabilities of the screen; for our im-
plementation, we used a 42-bit code appended to an 84-bit
message, capable of correcting any 6 erroneous bits within
a 126-bit packet. These parameters were chosen to give a
99% packet transmission rate on the Microsoft Surface
device (which exhibited the most challenging transmission
characteristics, as seen in Figure 7).

Connection Tear Down
When the cam device is removed from the display, the cap
device immediately detects the loss of capacitive tracking
and can optionally terminate the connection if no further
interaction is desired. This facilitates rapid and effortless
creation and destruction of ephemeral pairings between the
devices. Moreover, this serves to require physical proximi-
ty for pairings to exist, which is not possible with a purely
wireless solution. Alternatively, applications can choose to
retain the pairing after the phone leaves the display, using
CapCam as a general-purpose device pairing solution.

Privacy
Although CapCam was not designed for security-sensitive
applications, it does exhibit several properties that make it
reasonably robust against simple attacks (e.g., compared to
that of entering a PIN into an ATM).

A co-located attacker with line of sight could conceivably
intercept the data sent from the display to the phone. This
line of sight is significantly hindered by the fact we render
our visible light handshake under the device, thus requiring
a camera to be at an oblique angle relative to the display
and with a large depth of field. We could further obfuscate
data transmission with false patterns presented around the
camera module.

Even if the attacker is successful in visually intercepting
the connection data, they would only gain access to the host
display (not the client) and then, only for an extremely
short period of time. Only one connection is permitted per
port/passcode. Thus, the attacker would have to decode the
CapCam packet before the phone; when the true client
phone does attempt to connect (perhaps a few tens of milli-
seconds later), the server can terminate both connections on
grounds of suspicious activity.

Figure 10. Keyboard example. The screen provides a large
on-screen keyboard for paired phones, easing text input.

Figure 11. Authentication demo. Instead of entering a password on a highly-visible on-screen keyboard, users select
an account (left) on their phone. The credentials are automatically sent after pressing the phone to the screen (right).

In general, after successfully establishing a two-way wire-
less connection between legitimate devices, the host/client
can negotiate an encrypted channel using e.g., Transport
Layer Security (TLS) to thwart passive listening attacks.

EVALUATION
We conducted an evaluation to determine the transmission
characteristics of CapCam: the bit error rate, packet drop
rate, and effective transmission rates over a range of differ-
ent transmission encodings and devices. Our evaluation
was performed on our three test devices: a Nexus 5
smartphone, a MacBook Pro laptop, and a Microsoft Sur-
face 55” multitouch display. A Nexus 5 smartphone was
used in all three cases to receive the data.

Each of the host displays was configured to repeatedly
flash a random data packet encoded with a random number
of color levels (from 2-16 levels per channel) and a random
packet length (from 10-20 display frames per packet), with
no error correction applied. In each case, the packet was
preceded and followed by the standard G,R,B header. After
the display flashes the packet, the phone sends back the
received packet (or reports a failure if the packet was not
detected) and the result is compared against the original
sent packet to determine the bit error rate.

RESULTS AND PERFORMANCE
Each display device was tested over a period of eight hours,
during which the smartphone was placed on the cap device
and configured to continually receive pairing data. In total,
113,957 packets were sent (over 32,000 per device); 64
packets were lost, for a packet loss rate of less than 0.06%.
In total, 5,106,848 bits of information were transmitted.

For each device and number of color levels, we computed
the total raw bit error rate, shown in Figure 7. The error rate
increases as the number of color levels increases, due to the
decreasing separation between adjacent color levels. We
then calculated the minimum amount of error correction
needed to ensure that 99% of packets are corrected (a pack-
et loss rate of 1%) for each encoding level; the error correc-
tion levels are shown in Figure 8 for a packet size of 126
bits. In all cases, a BCH error correction scheme was used.

Finally, based on the resulting effective payload sizes, we
computed the net throughput of the system, shown in Fig-
ure 9. The results show that there is a consistent “peak” of
throughput around 4-6 color levels, past which the in-
creased raw throughput is outweighed by the increase in
error rate.

As our implementation is designed for a power-of-two
number of color levels (for simplicity), we chose 8 color
levels for the MacBook and 4 color levels for the Nexus 5
and Microsoft Surface implementations, for bit rates of
150, 135 and 110 bits per second, respectively. These rates
are sufficient to send a full setup packet (32-bit IP address,
16-bit port, 32-bit passcode) in under one second on all
devices. For higher-security applications, 1.5 seconds
would allow for a 128-bit key to be transmitted.

Overall, our encoding scheme, coupled with our greater
control over the camera’s shutter timing and color correc-
tion, allows us to achieve speeds much higher than the col-
or transition approach shown in e.g., [12,34].

Figure 12. Data transfer between a phone and a desktop. Left: desktop files can be dropped onto the phone.

Right: dragging files to the bezel of the phone drops them on the desktop.

Figure 13. Business card exchange. After a meeting, electronic business cards are exchanged. Simply pressing one phone’s cam-

era to the other’s screen initiates CapCam pairing and downloads the requested card.

EXAMPLE APPLICATIONS AND INTERACTIONS
To illustrate the potential of CapCam, we built seven ex-
ample applications demonstrating different use cases.
Please also see our Video Figure, which underscores the
speed and robustness of our approach – all demos shown
are functional and real-time.

Facilitating Input
We built a simple application that allows the user to enter
text on their phone using a larger, on-screen keyboard (Fig-
ure 10). The user places their phone on a cap device (ori-
ented like a table), causing a position-tracked keyboard to
appear below the phone. Multiple devices can be paired to
the same cap device, each given their own keyboard, which
transmits keystrokes only to its respective device.

We also built a demo in which the phone transmits data to
the host cap device. With public kiosks, users often have to
enter their authentication credentials on a large touch-
screen, where they can be easily observed. In this example,
users can press their phone to the display to automatically
transmit their credentials rapidly and securely (Figure 11).

File & Information Transfer
Data transfer between a phone and a computer is often
challenging. In our desktop demo application, users simply
press their phone to the display to enable bidirectional
drag-and-drop file transfer. Dragging files off the phone
causes them to be copied to the desktop (Figure 12, right),
and vice-versa (Figure 12, left). The cap device tracks the

location of the phone, allowing its physical location to
serve as a drop target. Additionally, we stream file icons
and relative radial position to render a live preview of the
drop location.

Alternately, users can select files to download by pressing
the phone directly onto documents. In our gallery demo,
users can download a high-res image simply by placing
their phone camera to it (Figure 14). CapCam transmits a
URL for the desired content to the phone, which then
downloads and displays the image. We note in this example
that, from the user’s perspective, the act of pairing the
devices has disappeared into the main interaction itself.

The cap device need not always be a large display. We cre-
ated a phone-to-phone business card demo, where two us-
ers can exchange business cards by pressing their phones
together (Figure 13). CapCam transmits an appropriate
pairing code (e.g., Bluetooth device ID and PIN) and auto-
matically downloads the selected card file.

Phone as Accessory
The phone can also be used as an accessory for larger dis-
plays. As an example, we created a context+focus demo
where the phone (445 ppi) is used as a focus display for the
larger, low-resolution (~40 ppi) cap device (Figure 15). The
phone’s position and orientation is precisely tracked and
transmitted from the cap device to the phone, allowing a
seamless overlay of shared content.

Figure 16. CapCam air hockey. (A) Players are invited to join the game. (B) When players press their phones to the table,
CapCam rapidly and anonymously pairs the phones to the display. When two phones are paired, the game begins. (C) Players
use their physical phones to deflect the virtual puck. CapCam tracks the phones and their orientations on the screen. (D)
Sounds, vibrations and player-specific information appear on the phone, directed by the game through the paired connection.

Figure 14. Image gallery example. Users simply press their
phone to a desired image to download it.

Figure 15. Context+Focus demo. The phones display high-
resolution imagery that corresponds to the devices’ posi-
tion on screen. Users can also switch anatomical layers
and change zoom levels.

Finally, we developed an air-hockey game using CapCam.
In this demo, two users pair their phones to the cap device
to start a match. The phones are used as physical paddles to
hit the virtual puck (Figure 16). Furthermore, the phones
provide stereo audio feedback (e.g., puck hit sounds, goal
sirens, and ambient audience sounds), and even individual-
ized haptic feedback (e.g., short vibrations when the puck is
hit, long vibrations when a goal is scored).

DISCUSSION
Having been the focus of more than a decade of research
and development, NFC is a mature technology offering a
useful gold standard. Perhaps the most important factor is
pairing time, in which CapCam and NFC are comparable.
However, compared with NFC-based approaches, CapCam
inherently provides targeted and position-tracked interac-
tions. With spatial differentiation, multi-device (and multi-
person) interactions are readily supported, opening new and
different interactive opportunities. Further, CapCam re-
quires physical and direct contact to pair, as opposed to
NFC, which can pair at a distance of up to 10 cm without
line-of-sight (e.g., accidently through a pocket).
Although CapCam transmits data much slower than NFC
(150 bits/sec vs. 424 kbits/sec), the main goal of CapCam’s
pairing phase is simply to establish a unique, secure, high-
speed bidirectional link using wireless communication pro-
tocols already present on most devices, much like NFC
does when attempting to transfer files. There are also ave-
nues to boost CapCam’s transmission rate, for example by
transmitting different data across the pixels beneath the
camera to achieve spatial modulation.
CapCam presently requires a special application to be
downloaded to a phone before pairing can proceed. Thus,
the first time a user wishes to pair using CapCam, an appli-
cation would have to be downloaded and run, adding to the
pairing time. This, of course, is a one-time cost. Moreover,
there is no reason that CapCam could not be integrated into
the OS as a system level feature, just like NFC on many
phones. Thus, we see this limitation chiefly as an artifact of
prototyping and not an inherent quality of the technique.
Finally, due to the use of the rear camera, power usage is
fairly high during the CapCam pairing process. This could
be mitigated with custom hardware, such as a set of color
photodiodes connected to a low-power dedicated decoder
circuit, enabling always-on code detection.

CONCLUSION
We have presented CapCam, a technique that allows two
devices to establish rapid and ad-hoc connections simply by
pressing the camera of one device to the touchscreen of
another. By exploiting capacitive sensing, CapCam tracks
the precise position of the camera device, which combines
with rapid pairing to enable a wide range of interactive
functionality. From a technical perspective, we showed that
CapCam can transfer data from the screen to the camera
over 100 bits per second with negligible error, several times
faster than prior display-to-camera transmission schemes.
We use this to transmit data needed to establish a quicker

and more stable connection. Finally, we demonstrated a
wide range of fun and useful applications that showcase the
capabilities of CapCam.

ACKNOWLEDGEMENTS
This research was generously supported by the David and
Lucile Packard Foundation, a Google Faculty Research
Award and Qualcomm.

REFERENCES

1. Bazo, A. and Echtler, F. Phone proxies: effortless con-
tent sharing between smartphones and interactive sur-
faces. In Proc. EICS ‘14. 229-234.

2. Bier, E., Stone, M., Pier, K., Buxton, W. and DeRose,
T. Toolglass and magic lenses: the see-through inter-
face. In Proc. SIGGRAPH ‘93. 73-80.

3. Boring, S., Altendorfer, M., Broll, G., Hilliges, O. and
Butz, A. Shoot & copy: phonecam-based information
transfer from public displays onto mobile phones. In
Proc. CHI ‘07. 24-31.

4. Boring, S., Baur, D., Butz, A., Gustafson, S. and Bau-
disch, P. Touch projector: mobile interaction through
video. In Proc. CHI ‘10. 2287-2296.

5. Bose, R.C. and Ray-Chaudhuri, D.K. On A Class of
Error Correcting Binary Group Codes. Information and
Control, 3(1), March 1960. 68–79.

6. Castelluccia C. and Mutaf, P. Shake them up!: A
movement-based pairing protocol for CPU constrained
devices. In Proc. MobiSys ‘05. 51–64.

7. Chan, L., Müller, S., Roudaut, A. and Baudisch, P.
CapStones and ZebraWidgets: sensing stacks of build-
ing blocks, dials and sliders on capacitive touch screens.
In Proc. CHI ‘12. 2189-2192.

8. Chong M. and Gellersen, H. Usability classification for
spontaneous device association. Pers. Ubi. Comput. 16,
1 (Jan. 2012), 77–89.

9. Chong, M., Mayrhofer, R. and Gellersen, H. A Survey
of User Interaction for Spontaneous Device Association.
ACM Comput. Surv. 47, 1, Article 8 (May 2014), 40.

10. Echtler, F., Nestler, S., Dippon, A. and Klinker, G. Sup-
porting casual interactions between board games on
public tabletop displays and mobile devices. Personal
Ubiquitous Comput. 13, 8 (November 2009), 609-617.

11. Guo, A., Xiao, R. and Harrison, C. CapAuth: Identify-
ing and Differentiating User Handprints on Commodity
Capacitive Touchscreens. In Proc. ITS ‘15. 59-62.

12. Hesselmann, T., Henze, N. and Boll, S. FlashLight: op-
tical communication between mobile phones and inter-
active tabletops. In Proc. ITS ‘10. 135-138.

13. Hinckley, K. Synchronous gestures for multiple persons
and computers. In Proc. UIST ‘03. 149–158.

14. Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P.
and Smith, M. Stitching: pen gestures that span multiple
displays. In Proc. AVI ‘04. 23-31.

15. Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P.,
Beigl, M. and Gellersen, H. Smart-Its Friends: A Tech-
nique for Users to Easily Establish Connections be-
tween Smart Artefacts. In Proc. UbiComp ‘01. 116-122.

16. Holz, C., Buthpitiya, S. and Knaust, M. Bodyprint: Bi-
ometric User Identification on Mobile Devices Using
the Capacitive Touchscreen to Scan Body Parts. In
Proc. CHI ‘15. 3011-3014.

17. Lakatos, D., Blackshaw, M., Olwal, A., Barryte, Z.,
Perlin, K. and Ishii, H. T(ether): spatially-aware
handhelds, gestures and proprioception for multi-user
3D modeling and animation. In Proc. SUI ‘14. 90-93.

18. Leigh, S.-W., Schoessler, P., Heibeck, F., Maes, P. and
Ishii, H. THAW: tangible interaction with see-through
augmentation for smartphones on computer screens. In
Proc. TEI ‘15. 55-56.

19. Li, F., Dearman, D., and Truong, K. Virtual shelves:
interactions with orientation aware devices. In Proc.
UIST ‘09. 125-128.

20. Lin, F. X., Ashbrook, D. and White, S. RhythmLink:
securely pairing I/O-constrained devices by tapping. In
Proc. UIST ‘11. 263-272.

21. McCune, J., Perrig, A. and Reiter, M. 2005. Seeing-is-
believing: Using camera phones for human-verifiable
authentication. In Proc. IEEE S&P ‘05. 110–124.

22. Miyaoku, K., Higashino, S. and Tonomura, Y. C-blink:
a hue-difference-based light signal marker for large
screen interaction via any mobile terminal. Proc. UIST
‘04. 147-156.

23. Olwal, A. LightSense: enabling spatially aware
handheld interaction devices. In Proc. ISMAR ‘06. 119-
122.

24. Park, D.G., Kim, J.K., Sung, J.B., Hwang, J.H., Hyung,
C.H. and Kang, S.W. TAP: touch-and-play. In Proc.
CHI ‘06. 677-680.

25. Patel, S., Pierce, S. and Abowd, G. A gesture-based
authentication scheme for untrusted public terminals. In
Proc. UIST ‘04, 157-160.

26. QR Code. Automatic identification and data capture
techniques. Bar code symbology. BS ISO/IEC
18004:200.

27. Rekimoto, J. Pick-and-drop: a direct manipulation tech-
nique for multiple computer environments. In Proc.
UIST ‘97. 31-39.

28. Rekimoto, J. SyncTap: Synchronous user operation for
spontaneous network connection. Pers. Ubi. Comput. 8,
2 (May 2004), 126–134.

29. Rohs, M. and Oulasvirta, A. Target acquisition with
camera phones when used as magic lenses. In Proc.
CHI ‘08. 1409-1418.

30. Roth, V., Schmidt, P. and Guldenring, B. The IR ring:
authenticating users' touches on a multi-touch display.
In Proc. UIST ‘10. 259-262.

31. Saxena, N., Ekberg, J., Kostiainen, K. and Asokan, N.
2006. Secure device pairing based on a visual channel.
In Proc. IEEE S&P ‘06. 306–313.

32. Schmidt, D., Chehimi, F., Rukzio, E. and Gellersen, H.
PhoneTouch: a technique for direct phone interaction on
surfaces. In Proc. UIST ‘10. 13-16.

33. Schmidt, D., Seifert, J., Rukzio, E. and Gellersen, H. A
cross-device interaction style for mobiles and surfaces.
In Proc. DIS ‘12. 318-327.

34. Schwarz, J., Klionsky, D., Harrison, C., Dietz, P. and
Wilson, A. Phone as a pixel: enabling ad-hoc, large-
scale displays using mobile devices. In Proc. CHI ‘12.
2235-2238.

35. Seewoonauth, K., Rukzio, E., Hardy, R. and Holleis, P.
Touch & connect and touch & select: interacting with a
computer by touching it with a mobile phone. In Proc.
MobileHCI ‘09. Article 36 , 9 pages.

36. Wang, J., Zhai, S. and Canny, J. Camera phone based
motion sensing: interaction techniques, applications and
performance study. In Proc. UIST ‘06. 101-110.

37. Wilson, A.D. and Sarin, R. BlueTable: connecting wire-
less mobile devices on interactive surfaces using vision-
based handshaking. In Proc. GI ‘07. 119-125.

38. Woo, G., Lippman, A. and Raskar, R. VRCodes: Unob-
trusive and active visual codes for interaction by ex-
ploiting rolling shutter. In Proc. ISMAR ‘12. 59-64.

39. Yee, K. Peephole displays: pen interaction on spatially
aware handheld computers. In Proc. CHI ‘03. 1-8.

40. Yu, N., Chan, L., Lau, S. Y., Tsai, S., Hsiao, I., Tsai, D.,
Hsiao, F., Cheng, L., Chen, M., Huang, P. and Hung, Y.
TUIC: enabling tangible interaction on capacitive multi-
touch displays. In Proc. CHI ‘11. 2995-3004.

