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ABSTRACT 
We present CapCam, a novel technique that enables 
smartphones (and similar devices) to establish quick, ad-
hoc connections with a host touchscreen device, simply by 
pressing a device to the screen’s surface. Pairing data, used 
to bootstrap a conventional wireless connection, is trans-
mitted optically to the phone’s rear camera. This approach 
utilizes the near-ubiquitous rear camera on smart devices, 
making it applicable to a wide range of devices, both new 
and old. CapCam also tracks phones’ physical positions on 
the host capacitive touchscreen without any instrumenta-
tion, enabling a wide range of targeted interactions. We 
quantify the communication performance of our pairing 
approach and demonstrate data transmission rates up to 
four times faster than prior camera-based techniques. To 
demonstrate the unique capability and utility of our system, 
we built a series of example applications, highlighting dif-
ferent interaction techniques CapCam enables. 
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INTRODUCTION 
Large touchscreen displays, such as public kiosks, digital 
whiteboards and interactive tabletops have become increas-
ingly popular as prices have fallen. Similarly, mobile de-
vices, such as smartphones and tablets, have achieved 
ubiquity. While such devices are reasonably smart on their 
own, cross-device interactions hold much promise for mak-
ing interactive experiences even more powerful [14].  

However, interacting across devices is rarely straightfor-
ward. Although many mobile devices support e.g., Blue-
tooth pairing, such pairing options are generally time-
consuming and cumbersome (i.e., on the order of 5 se-
conds, see Table 1). Often, users must confirm or manually 
enter connection parameters (e.g., device, network identifi-
er) and security parameters (e.g., PIN) [27]. Short-range 
NFC, an emerging technology, aims to mitigate many of 
these issues. However, it requires specific hardware on both 
devices, and more importantly, only indicates device pres-
ence, not position (unless receivers are tiled into an matrix 
[35] or combined with another method, like optical fiducial 
tags [1]). Thus, it only allows for coarse device-to-device 
pairing, precluding metadata such as spatial position and 
rotation of devices, as well as rich multi-device experienc-
es. Moreover, NFC is not commonly available on larger 
devices, such as laptops, tablets, and interactive surfaces – 
the class of surfaces we chiefly target. 

CAPCAM 
In this work, we describe CapCam, a new technique that 
provides rapid, ad-hoc connections between two devices. 
CapCam pairs a “cap” device with a capacitive touchscreen 
to a “cam” device with a camera sensor (Figure 1A). For 
example, typical smartphones and tablets can be paired 
with each other, and these devices can be paired to even 
larger touchscreens, such as smart whiteboards and 
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Figure 1. A: CapCam is used to pair two devices, a “cap” device (background is a large touchscreen display) and a “cam” de-
vice (here, a smartphone). B: The phone is pressed to the display. C: The phone body creates a characteristic signal on the 
touchscreen’s capacitive sensor. D: CapCam extracts the shape, position and orientation of the phone from this capacitive im-
age. E: CapCam encodes pairing data (e.g., IP, port and password) as a flashing color pattern, rendered beneath the phone 
body. F: The phone’s rear camera captures the pattern, and uses it to establish a conventional two-way wireless link (e.g., 
WiFi). With both devices paired and communicating, interactive applications can be launched, such as this virtual keyboard. 
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touchscreen monitors. CapCam uses the cap device’s 
touchscreen to detect and track the cam device (Figure 1, C 
and D), and renders color-modulated pairing data that is 
captured by the cam device’s rear camera (Figure 1E).  

This pairing data contains configuration information neces-
sary to establish a bidirectional link (e.g., IP address, port 
and password). In this way, CapCam provides a unidirec-
tional communication mechanism from the touchscreen to 
the camera, which is then used to bootstrap a full bidirec-
tional, high-speed link (Figure 1F). Because CapCam also 
provides precise, continuous spatial tracking, we can enable 
rich synergistic applications utilizing both (or many) devic-
es at once.  

Overall, we believe CapCam exhibits six desirable proper-
ties – it enables zero-configuration pairing via automatical-
ly transmitted pairing codes; it is rapid, capable of estab-
lishing links in roughly one second; anonymous, in that it 
requires no identifying information to be exchanged; pair-
ing is explicitly initiated by users through a purposeful 
pressing of a device to a host screen; it enables targeted 
interactions on said screen via position tracking; and, it 
allows for multiple devices to be paired and used on the 
same cap device simultaneously. 

Although many prior systems have independently ad-
dressed pairing or spatial interaction, few have combined 
these into a single system. CapCam provides both pairing 
and spatial interaction as phases of a single interactive 
transaction, enabling rapid, ad hoc interactions, e.g,. walk-
ing up to a public display and initiating rich, spatial interac-
tions nearly instantaneously. 

In addition to describing our CapCam implementation, we 
also offer several applications and interactions enabled by 
our technique. We further contribute an evaluation of the 
technical aspects of our approach, including pairing laten-
cy, pairing code bandwidth and bit error rate across three 
exemplary devices. 

RELATED WORK 
CapCam intersects with several distinct areas of the litera-
ture, which we now review. 

Device Pairing Interactions 
Interaction techniques for establishing an ad hoc connec-
tion between devices in a convenient but secure fashion 
have been proposed in a large number of research systems. 
Chong et al. provide a survey of systems in [9] and review 
relevant usability factors in [8]. Systems differ in terms of 
the actions users must undertake to establish an association 
between devices: using e.g., pre-shared codes [20], simple 
placement of a phone in view of a camera on a specially 
augmented surface [37], gestures performed by the user 
with a mobile device [15, 25], or synchronous motion, vi-
bration or other input on two devices [6, 13, 14, 15, 24, 28], 
among others.  

Pairing Techniques using Optical Communication 
A number of systems have explored optical transmission 
methods for device pairing [21, 26, 30, 31, 37]. Several use 
color encoding, e.g., [22] which uses hue differentials for 
coding; [38], which exploits the rolling-shutter effect to 
present imperceptible visual tags; and [12, 34], which use 
color transitions for coding. However, only one prior sys-
tem, FlashLight [12] has demonstrated optical transmission 
of data between a display (a diffuse illumination touch ta-
ble) and a coupled phone.  

Augmenting Interactions Using Spatial Tracking 
A phone or other device with knowledge of its spatial loca-
tion can be used as an auxiliary input and/or display device 
to augment interaction on a larger device (see e.g., [17, 19, 
23, 36]). For example, it could be used as a magic lens [2], 
providing physical detail+context [29], or as a peephole 
display [39] in a larger context. Other systems use special-
ly-designed tangible widgets which can be tracked and 
identified by a capacitive touchscreen, e.g., TUIC [40] and 
CapStones and ZebraWidgets [7]. The phone’s camera can 
also be used to infer the phone’s position relative to a re-
mote display, to enable various interactions [3, 4]. 

One exemplary system is PhoneTouch [32, 33], which lets 
users tap a phone onto a display surface and perform tar-
geted interactions. This is achieved by merging two dispar-
ate events: an impact registered by the phone’s accelerome-
ter and the appearance of a new blob on an FTIR display. 

Method Pair Time Notes 
Bluetooth 4.8 sec 

(SD 2.5) 
Starting from Bluetooth config screen of smartphone with device already in discoverable mode. Mean of: Hyundai Elantra  
(2012), Samsung HM3500 Headset, Plantronics BackBeat 903 headset, Beats Studio Wireless  headset.  

Wifi WPS 5.1 sec 
(SD 1.3) 

Starting in WiFi settings of smartphone, from moment of WPS button press. Mean of: LinkSys E3200 router, MyQ Garage 
door opener, Technicolor 582n router, D-Link N300 router. 

NFC 1.3 sec 
(SD 0.3) 

With item to send or NFC application already open, from time to tap devices together to time of visible response (“beam” 
prompt, notification, etc.). Mean of: Nexus 7, LG NFC Tag, WhizTag, Sony Xperia Z, Samsung Galaxy Nexus. 

FlashLight [12] 2.64 sec 
(Tx only) 

Pairing data transmission time alone, calculated from the paper. 100 ms camera synchronization time, plus 84-bit payload at 
33 bits/sec (the highest throughput achievable without significant error). Data rate assumes error correction is not needed. 

BlueTable [37] 3 sec 
(Tx only) 

Pairing data transmission time alone, calculated using the statistics quoted in the paper. This system transmits 8-bit pairing 
codes at 2.67 bits/sec. 

CapCam 1.21 sec 
(SD 0.1) 

With app open, from time to tap Cam device to time of visible Cap device response (including network connection over-
head). 84-bit message + 42 additional ECC bits. Time measured using worst-performing device (Microsoft Surface). 0.83 
seconds to transmit the 126-bit pairing packet alone (for comparison with FlashLight and BlueTable). See also Video Figure. 

Table 1. Informal comparison of different pairing methods. 



 

This requires devices to be pre-paired and have synchro-
nized clocks. Similarly, the Thaw system [18] uses a hue 
encoding technique to encode x-y positions on a display, 
which can be interpreted by the camera of a pre-paired 
phone. As previously mentioned, NFC pairs one device to 
another, without fine grain targeting. In response, Touch & 
Select [35] uses a special grid of NFC tags operating be-
hind the display to provide rough position tracking of a 
phone while using NFC. Finally, Echtler et al. [10] use a 
camera-driven interactive table to recognize devices based 
on the shadows they cast, and combine this with Bluetooth 
signal strength to establish a connection, thus requiring no 
modification to e.g., smartphones.  

Closely Related Systems  
A few systems deserve special mention for their proximity 
to the present work. BlueTable [37] tracks phones on a sur-
face using an overhead camera, and pairs with them via 
infrared flashes from the IrDA transceiver. BlueTable was 
able to transfer data at 2.67 bits per second using binary 
encoding. FlashLight [12] is a system that transmits pairing 
data from a diffuse illumination touch table to a phone rest-
ing on it; a basic color transition scheme is used to transmit 
approximately one bit per frame to the phone’s camera, 
achieving a transmission rate of 33 bits per second.  

In contrast to these systems, CapCam is the first to use 
commodity, off-the-shelf capacitive touchscreens, meaning 
our technique is immediately portable to most touchscreen 
devices today (as opposed to optical touch tables used in 
e.g., [10, 37]). Additionally, CapCam offers significantly 
higher data transmission rates – up to 150 bits per second – 
allowing for almost instant pairing. Table 1 offers findings 
from an informal comparison of commercial systems, 
BlueTable and FlashLight. Beyond offering competitive 
pairing ease and speed, CapCam also significantly extends 
prior work with respect to our exploration of the interac-
tions enabled; please also see our Video Figure. 

IMPLEMENTATION 
The cap device in CapCam can be any capacitive touch-
screen device, ranging from large public kiosks to small 
mobile phones. To demonstrate this range, we used several 
different off-the-shelf, consumer devices for development 
and testing. Importantly, these devices represent a wide 
range of sizes and pixel densities. 

Smartphone – We used a stock Nexus 5 running Android 
5.0.1, which features a 5” diagonal screen with a resolution 
of 1080x1920 pixels (445 pixels per inch) running at 
60 fps, and a touchscreen update rate of 120 Hz. 

Laptop – Laptops increasingly feature touchscreens, and so 
we chose a laptop as our second display platform. In order 
to directly compare transmission performance with Flash-
Light [12], we use a MacBook Pro. Because this particular 
computer lacks a touchscreen, we only evaluated data 
transmission rates with this device. The MacBook has a 15” 
screen with a resolution of 2880x1800 pixels (220 PPI) 
running at 60 fps. 

Large Interactive Surface – As a demonstration of large 
CapCam-enabled interactions, we use a 55” Microsoft Sur-
face touchscreen display, with a resolution of 1920x1080 
pixels (40 PPI) at 60 Hz. The touchscreen has an update 
rate of 120 Hz. 

Cam Device 
As an example cam device, we used an unmodified Nexus 
5 smartphone running Android 5.0.1. Android 5 provides 
low-level control over many parameters of the phone’s 
camera, enabling specialized imaging applications like 
ours. Specifically, it allows full-manual control over shutter 
speed, exposure, focus and color compensation. Although 
few devices currently support this full-control API, the un-
derlying features are present on nearly all image sensors at 
a low level (readily available to system integrators and 
hardware manufacturers). 

Despite our control over the camera’s focus parameters, the 
images are nonetheless blurred because the camera cannot 
focus at such short distances. We use the camera in manu-
al-control video mode, which provides 640x480 resolution 
images at 30 FPS. 

 
Figure 2. A hand and smartphone resting on our Mi-
crosoft Surface display. The capacitive image is seen above 
(offset vertically for illustrative purposes). 

 
Figure 3. Capacitive images from our Nexus 5 smartphone 
showing the signal obtained from finger touches (left) and 
a phone contact (right). The camera ring of the contacting 
phone is visible at right. For illustrative purposes, the sig-
nal is offset vertically to avoid occlusion.  



 

Capacitive Image Processing and Tracking 
Capacitive touchscreens function by sensing changes in the 
electric field near the surface of the display. Typically, the 
field is sensed at points on a regularly-spaced electrode 
grid, resulting in a low-resolution “capacitive image”. The 
touch controller processes this image internally to extract 
touch data (most typically, the X/Y position of touch con-
tacts), which is then passed up to the operating system. 

Most touch controllers, however, offer a “debug” interface 
that enables the complete capacitive image to be retrieved. 
On the Nexus 5 smartphone, we modified the Linux kernel 
to provide access to the Synaptics S3350 touch controller’s 
capacitive image (a capability previously exploited in e.g., 
CapAuth [11] and BodyPrint [16]). On the Microsoft Sur-
face display, we developed a user-space USB driver for OS 
X integrated into the cap application, which retrieves the 
image over the USB connection. We use the raw capacitive 
image (Figures 2 and 3) produced by the touchscreen con-
troller to implement our own tracking algorithms, which we 
designed for finding phones and touches simultaneously 
(Figure 4 and Video Figure). 

On our large interactive display, we find phones by track-
ing the rectangular capacitive imprint (Figure 2, right). 
When a phone is placed on the surface, the phone creates a 
characteristic electric field disturbance under the entire area 
of the phone. Although the capacitive measurement of the 
phone is generally lower than that of fingers, the noise level 
of the Microsoft Surface display precludes using a simple 
threshold approach. Instead, we use a connected compo-
nents algorithm to detect blobs in the image. The blob size 
is used to determine whether the blob represents a phone or 
a finger touch. A natural consequence of this simple ap-
proach is that large touch contacts, such as palms, may also 
be recognized as “phones”. However, since non-cam-

device contacts will not pair with the screen, they can be 
rejected quickly. 

For phones, we then fit a rectangle to the contact blob to 
extract the approximate bounding box of the phone (Figure 
4). To obtain the phone’s angle, the algorithm selects the 
orientation angle that minimizes the bounding box size. 
After the phone establishes a connection with the display, it 
can optionally transmit its physical dimensions to the dis-
play to enable more precise tracking. 

On the Nexus 5 smartphone, the touchscreen controller’s 
built-in auto-calibration feature, which integrates large, 
weak capacitive blobs into the background profile over 
time, precluded us from similarly tracking the body of the 
other phone. Consequently, we track other phones (i.e., 
cam devices) by identifying and tracking the metallic ring 
that often surrounds camera modules (seen in Figure 3, 
right). We use a connected-components algorithm (flood 
fill algorithm) to locate the ring, and distinguish it from 
fingers by comparing the maximum signal value against a 
threshold – the capacitive measurement of the ring is sig-
nificantly lower than any finger. 

Of note, the lower resolution of our Surface’s touchscreen 
prevents us from reliably segmenting the camera module 
from the rest of the phone’s blob. Instead, we treat any con-
tact point inside the phone’s area as a potential camera. In 
order to accurately discern the camera’s position, we vary 
the pairing data (e.g., using different passcodes) rendered 
beneath the phone by position (e.g., quadrants) – the unique 
pairing data that eventually connects thus reveals the cam-
era location. As camera modules are almost always located 
at the top of devices, we can further infer the orientation of 
devices (Figure 4, top left corner denoted with a circle). 

Transmitting the Pairing Data 
We encode pairing data as visible light beneath the device. 
Pairing data is encoded into sequential frames, where each 
frame consists of a color. Thus, the pairing data appears 
visually as a series of flashing solid colors on the display 
(see Video Figure). To match the frame rate of the camera, 
the frames are transmitted at 30 Hz (thus, when displayed 
at 60 Hz we simply repeat each color frame twice). 

Each packet of pairing data begins with a three-frame 
header, consisting of one frame each of solid green, red and 
blue (Figure 5). This sequence is highly unlikely to occur in 
the wild or at random, especially at precisely 30 Hz, and so 
it neatly delineates packets. Furthermore, as we describe 
later, this known and “pure-color” header data is used to 
automatically color calibrate the camera to the particular 
display for improved payload decoding. 

 
Figure 4. Multiple devices (of many models) simultaneous-
ly tracked on the Microsoft screen by our algorithm. Rec-
tangles display the recognized phone’s shape, orientation 
and position. A red line denotes a device’s x-axis; the up-
per-left corner is marked with a hollow circle.  

 
Figure 5. A sample packet as encoded by the display. The packet starts with a three-frame green-red-blue header, followed by 
21 color frames containing 6 bits each (using 4 color levels per channel). The raw transmitted bits are noted below each frame. 



 

Following the header, the pairing data is encoded into the 
RGB color values of each frame (Figure 5), depending on 
the number of color levels configured. For example, if we 
use 4 color levels per channel (e.g., color channel values of 
0, 85, 170, and 255), then each color channel encodes 2 bits 
of data (00, 01, 10 and 11 respectively). Since we can inde-
pendently manipulate R, G and B output on the display, 
each frame encodes 6 bits. Using this scheme, a 162-bit 
message can be transmitted in one second (30 frames total, 
three header frames plus 27 data frames). Increasing the 
number of levels per channel provides higher theoretical 
throughput, but also raises the error rate. Consequently, the 
number of levels should be chosen to optimize the error-
corrected bit rate (Figure 9). 

Modern operating systems perform sophisticated color cor-
rection to match display characteristics with human percep-
tion. These color corrections include gamma corrections, 
chromatic shifts, white-point adjustments, and gross bright-
ness/contrast control. Although these are useful for present-
ing accurate colors to humans, they cause unpredictable 
changes in the displayed color data across monitors. We 
therefore bypass these color correction algorithms by speci-
fying that our color data is pre-corrected to the sRGB color 
space, thus allowing us to display “raw” RGB values. 

As LCD displays vary in emission spectra and brightness, 
there will still be a color mismatch between the display and 
the camera. We use our GRB packet header (Figures 5 and 

6) to calibrate the camera, computing a color-calibration 
matrix that reduces the observed cross-talk between differ-
ent channels and normalizes the sensitivity of the camera’s 
response to each channel. After this correction, there is still 
some residual noise, for example, some LCD displays ex-
hibit slow switching times, resulting in intermediate color 
values being received by the camera. Because of this, some 
level of error correction is required to accurately transmit 
packets. Furthermore, these effects may reduce the number 
of usable color levels per channel. 

Capturing the Connection String with the Camera 
Our example displays all have a refresh rate of 60 Hz, accu-
rate to within fractions of a Hz. Due to the rolling shutter 
on the phone’s camera (true for most cameras used in 
smartphones), the camera frame will usually contain part of 
one display frame, the vertical blanking interval, and part 
of the next display frame (Figure 6). The point in the image 
at which the blanking interval appears will move as the 
camera moves in and out of sync with the display. If the 
break moves across the image too quickly, the captured 
frames will skip or lag with respect to the display, invali-
dating the received data.  

Thus, we configure the phone’s shutter speed so that it cap-
tures frames as close to 30 Hz as possible, by setting the 
sensor frame duration as close to 33.3 ms as the hardware 
will allow. On the Nexus 5, we can do so to within 0.3 Hz 
(33.1 ms), so that the blanking interval moves at most 1/3 
of the camera frame per second. This is sufficiently stable 
for our use. We used the same camera settings for all 
smartphones and cap devices.  

 
Figure 7. Raw bit error rate (% of bits flipped)  

as a function of color level density. 

  
Figure 6. Two consecutive camera frames captured by our 
Nexus 5, showing our GRB packet header (Figure 5). Im-
age rows are captured sequentially in time due to the roll-
ing shutter. Left: the green header frame, followed by the 
start of the red frame. Right: the next frame shows the end 
of the red frame and the start of the blue frame. White dots 
represent the sampling points used to extract the packet. 

. 

 
Figure 9. Effective payload data transmission rate as a 
function of color level density, after applying the error cor-
rection necessary for a target packet loss rate of 1%. 

 
Figure 8. Percentage of 126-bit packet needed for error 
correction to attain a packet loss rate of 1%, as a function 
of color level density. 



 

On the cam device, we select eight sample points across the 
height of the camera frame (Figure 6, white dots). At each 
sample point, we attempt to decode the observed color se-
quence as a packet. Because we synchronize closely to the 
display’s frame rate, there will be at least one sample point 
that is not affected by the rolling shutter break for the dura-
tion of the transmission, allowing that sample point to re-
ceive the message and decode it successfully. 

Connection Creation 
Once the cam device receives and decodes the pairing data 
packet, it initiates a connection to the display. In our proof-
of-concept implementation, the connection is made over 
WiFi, though any wireless protocol could be used (e.g., 
cellular). The pairing data contains all data necessary to 
establish this connection. For example, it could contain a 
Bluetooth hardware address and PIN, a WiFi ad-hoc 
BSSID and WPA2 key, or an IP address and port if the 
devices are on a shared network (e.g., cellular network or 
WiFi access point). The pairing data packet also contains a 
one-time use passcode (i.e., nonce), which further identifies 
the cam device to the cap device. 

Error Correction 
Due to inherent noise and non-uniformity in the camera 
hardware, color space differences, and LCD imperfections, 
some level of error correction is needed to ensure reliable 
data transmission. In our implementation, we employ a 
BCH error-correcting code [5] appended to each transmit-

ted packet. The precise code configuration used can be op-
timized based on the capabilities of the screen; for our im-
plementation, we used a 42-bit code appended to an 84-bit 
message, capable of correcting any 6 erroneous bits within 
a 126-bit packet. These parameters were chosen to give a 
99% packet transmission rate on the Microsoft Surface 
device (which exhibited the most challenging transmission 
characteristics, as seen in Figure 7). 

Connection Tear Down 
When the cam device is removed from the display, the cap 
device immediately detects the loss of capacitive tracking 
and can optionally terminate the connection if no further 
interaction is desired. This facilitates rapid and effortless 
creation and destruction of ephemeral pairings between the 
devices. Moreover, this serves to require physical proximi-
ty for pairings to exist, which is not possible with a purely 
wireless solution. Alternatively, applications can choose to 
retain the pairing after the phone leaves the display, using 
CapCam as a general-purpose device pairing solution. 

Privacy 
Although CapCam was not designed for security-sensitive 
applications, it does exhibit several properties that make it 
reasonably robust against simple attacks (e.g., compared to 
that of entering a PIN into an ATM).  

A co-located attacker with line of sight could conceivably 
intercept the data sent from the display to the phone. This 
line of sight is significantly hindered by the fact we render 
our visible light handshake under the device, thus requiring 
a camera to be at an oblique angle relative to the display 
and with a large depth of field. We could further obfuscate 
data transmission with false patterns presented around the 
camera module.  

Even if the attacker is successful in visually intercepting 
the connection data, they would only gain access to the host 
display (not the client) and then, only for an extremely 
short period of time. Only one connection is permitted per 
port/passcode. Thus, the attacker would have to decode the 
CapCam packet before the phone; when the true client 
phone does attempt to connect (perhaps a few tens of milli-
seconds later), the server can terminate both connections on 
grounds of suspicious activity.  

 
Figure 10. Keyboard example. The screen provides a large 
on-screen keyboard for paired phones, easing text input. 

 

 
Figure 11. Authentication demo. Instead of entering a password on a highly-visible on-screen keyboard, users select  
an account (left) on their phone. The credentials are automatically sent after pressing the phone to the screen (right). 

 



 

In general, after successfully establishing a two-way wire-
less connection between legitimate devices, the host/client 
can negotiate an encrypted channel using e.g., Transport 
Layer Security (TLS) to thwart passive listening attacks. 

EVALUATION 
We conducted an evaluation to determine the transmission 
characteristics of CapCam: the bit error rate, packet drop 
rate, and effective transmission rates over a range of differ-
ent transmission encodings and devices. Our evaluation 
was performed on our three test devices: a Nexus 5 
smartphone, a MacBook Pro laptop, and a Microsoft Sur-
face 55” multitouch display. A Nexus 5 smartphone was 
used in all three cases to receive the data.  

Each of the host displays was configured to repeatedly 
flash a random data packet encoded with a random number 
of color levels (from 2-16 levels per channel) and a random 
packet length (from 10-20 display frames per packet), with 
no error correction applied. In each case, the packet was 
preceded and followed by the standard G,R,B header. After 
the display flashes the packet, the phone sends back the 
received packet (or reports a failure if the packet was not 
detected) and the result is compared against the original 
sent packet to determine the bit error rate. 

RESULTS AND PERFORMANCE 
Each display device was tested over a period of eight hours, 
during which the smartphone was placed on the cap device 
and configured to continually receive pairing data. In total, 
113,957 packets were sent (over 32,000 per device); 64 
packets were lost, for a packet loss rate of less than 0.06%. 
In total, 5,106,848 bits of information were transmitted. 

For each device and number of color levels, we computed 
the total raw bit error rate, shown in Figure 7. The error rate 
increases as the number of color levels increases, due to the 
decreasing separation between adjacent color levels. We 
then calculated the minimum amount of error correction 
needed to ensure that 99% of packets are corrected (a pack-
et loss rate of 1%) for each encoding level; the error correc-
tion levels are shown in Figure 8 for a packet size of 126 
bits. In all cases, a BCH error correction scheme was used. 

Finally, based on the resulting effective payload sizes, we 
computed the net throughput of the system, shown in Fig-
ure 9. The results show that there is a consistent “peak” of 
throughput around 4-6 color levels, past which the in-
creased raw throughput is outweighed by the increase in 
error rate.  

As our implementation is designed for a power-of-two 
number of color levels (for simplicity), we chose 8 color 
levels for the MacBook and 4 color levels for the Nexus 5 
and Microsoft Surface implementations, for bit rates of 
150, 135 and 110 bits per second, respectively. These rates 
are sufficient to send a full setup packet (32-bit IP address, 
16-bit port, 32-bit passcode) in under one second on all 
devices. For higher-security applications, 1.5 seconds 
would allow for a 128-bit key to be transmitted.  

Overall, our encoding scheme, coupled with our greater 
control over the camera’s shutter timing and color correc-
tion, allows us to achieve speeds much higher than the col-
or transition approach shown in e.g., [12,34].  

 
Figure 12. Data transfer between a phone and a desktop. Left: desktop files can be dropped onto the phone.  

Right: dragging files to the bezel of the phone drops them on the desktop. 

 
Figure 13. Business card exchange. After a meeting, electronic business cards are exchanged. Simply pressing one phone’s cam-

era to the other’s screen initiates CapCam pairing and downloads the requested card. 



 

EXAMPLE APPLICATIONS AND INTERACTIONS 
To illustrate the potential of CapCam, we built seven ex-
ample applications demonstrating different use cases. 
Please also see our Video Figure, which underscores the 
speed and robustness of our approach – all demos shown 
are functional and real-time. 

Facilitating Input 
We built a simple application that allows the user to enter 
text on their phone using a larger, on-screen keyboard (Fig-
ure 10). The user places their phone on a cap device (ori-
ented like a table), causing a position-tracked keyboard to 
appear below the phone. Multiple devices can be paired to 
the same cap device, each given their own keyboard, which 
transmits keystrokes only to its respective device. 

We also built a demo in which the phone transmits data to 
the host cap device. With public kiosks, users often have to 
enter their authentication credentials on a large touch-
screen, where they can be easily observed. In this example, 
users can press their phone to the display to automatically 
transmit their credentials rapidly and securely (Figure 11). 

File & Information Transfer 
Data transfer between a phone and a computer is often 
challenging. In our desktop demo application, users simply 
press their phone to the display to enable bidirectional 
drag-and-drop file transfer. Dragging files off the phone 
causes them to be copied to the desktop (Figure 12, right), 
and vice-versa (Figure 12, left). The cap device tracks the 

location of the phone, allowing its physical location to 
serve as a drop target. Additionally, we stream file icons 
and relative radial position to render a live preview of the 
drop location. 

Alternately, users can select files to download by pressing 
the phone directly onto documents. In our gallery demo, 
users can download a high-res image simply by placing 
their phone camera to it (Figure 14). CapCam transmits a 
URL for the desired content to the phone, which then 
downloads and displays the image. We note in this example 
that, from the user’s perspective, the act of pairing the 
devices has disappeared into the main interaction itself. 

The cap device need not always be a large display. We cre-
ated a phone-to-phone business card demo, where two us-
ers can exchange business cards by pressing their phones 
together (Figure 13). CapCam transmits an appropriate 
pairing code (e.g., Bluetooth device ID and PIN) and auto-
matically downloads the selected card file. 

Phone as Accessory 
The phone can also be used as an accessory for larger dis-
plays. As an example, we created a context+focus demo 
where the phone (445 ppi) is used as a focus display for the 
larger, low-resolution (~40 ppi) cap device (Figure 15). The 
phone’s position and orientation is precisely tracked and 
transmitted from the cap device to the phone, allowing a 
seamless overlay of shared content. 

  
Figure 16. CapCam air hockey. (A) Players are invited to join the game. (B) When players press their phones to the table, 
CapCam rapidly and anonymously pairs the phones to the display. When two phones are paired, the game begins. (C) Players 
use their physical phones to deflect the virtual puck. CapCam tracks the phones and their orientations on the screen. (D) 
Sounds, vibrations and player-specific information appear on the phone, directed by the game through the paired connection. 

 
Figure 14. Image gallery example. Users simply press their 
phone to a desired image to download it. 

 
Figure 15. Context+Focus demo. The phones display high-
resolution imagery that corresponds to the devices’ posi-
tion on screen. Users can also switch anatomical layers 
and change zoom levels. 



 

Finally, we developed an air-hockey game using CapCam. 
In this demo, two users pair their phones to the cap device 
to start a match. The phones are used as physical paddles to 
hit the virtual puck (Figure 16). Furthermore, the phones 
provide stereo audio feedback (e.g., puck hit sounds, goal 
sirens, and ambient audience sounds), and even individual-
ized haptic feedback (e.g., short vibrations when the puck is 
hit, long vibrations when a goal is scored).  

DISCUSSION 
Having been the focus of more than a decade of research 
and development, NFC is a mature technology offering a 
useful gold standard. Perhaps the most important factor is 
pairing time, in which CapCam and NFC are comparable. 
However, compared with NFC-based approaches, CapCam 
inherently provides targeted and position-tracked interac-
tions. With spatial differentiation, multi-device (and multi-
person) interactions are readily supported, opening new and 
different interactive opportunities. Further, CapCam re-
quires physical and direct contact to pair, as opposed to 
NFC, which can pair at a distance of up to 10 cm without 
line-of-sight (e.g., accidently through a pocket). 
Although CapCam transmits data much slower than NFC 
(150 bits/sec vs. 424 kbits/sec), the main goal of CapCam’s 
pairing phase is simply to establish a unique, secure, high-
speed bidirectional link using wireless communication pro-
tocols already present on most devices, much like NFC 
does when attempting to transfer files. There are also ave-
nues to boost CapCam’s transmission rate, for example by 
transmitting different data across the pixels beneath the 
camera to achieve spatial modulation. 
CapCam presently requires a special application to be 
downloaded to a phone before pairing can proceed. Thus, 
the first time a user wishes to pair using CapCam, an appli-
cation would have to be downloaded and run, adding to the 
pairing time. This, of course, is a one-time cost. Moreover, 
there is no reason that CapCam could not be integrated into 
the OS as a system level feature, just like NFC on many 
phones. Thus, we see this limitation chiefly as an artifact of 
prototyping and not an inherent quality of the technique. 
Finally, due to the use of the rear camera, power usage is 
fairly high during the CapCam pairing process. This could 
be mitigated with custom hardware, such as a set of color 
photodiodes connected to a low-power dedicated decoder 
circuit, enabling always-on code detection.  

CONCLUSION 
We have presented CapCam, a technique that allows two 
devices to establish rapid and ad-hoc connections simply by 
pressing the camera of one device to the touchscreen of 
another. By exploiting capacitive sensing, CapCam tracks 
the precise position of the camera device, which combines 
with rapid pairing to enable a wide range of interactive 
functionality. From a technical perspective, we showed that 
CapCam can transfer data from the screen to the camera 
over 100 bits per second with negligible error, several times 
faster than prior display-to-camera transmission schemes. 
We use this to transmit data needed to establish a quicker 

and more stable connection. Finally, we demonstrated a 
wide range of fun and useful applications that showcase the 
capabilities of CapCam. 
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