

DIRECT: Making Touch Tracking on Ordinary Surfaces
Practical with Hybrid Depth-Infrared Sensing

Robert Xiao Scott Hudson Chris Harrison
Carnegie Mellon University, Human-Computer Interaction Institute

5000 Forbes Avenue, Pittsburgh, PA 15213
{brx, scott.hudson, chris.harrison}@cs.cmu.edu

ABSTRACT
Several generations of inexpensive depth cameras have
opened the possibility for new kinds of interaction on eve-
ryday surfaces. A number of research systems have demon-
strated that depth cameras, combined with projectors for
output, can turn nearly any reasonably flat surface into a
touch-sensitive display. However, even with the latest gen-
eration of depth cameras, it has been difficult to obtain
sufficient sensing fidelity across a table-sized surface to get
much beyond a proof-of-concept demonstration. In this
paper we present DIRECT, a novel touch-tracking algo-
rithm that merges depth and infrared imagery captured by a
commodity sensor. This yields significantly better touch
tracking than from depth data alone, as well as any prior
system. Further extending prior work, DIRECT supports
arbitrary user orientation and requires no prior calibration
or background capture. We describe the implementation of
our system and quantify its accuracy through a comparison
study of previously published, depth-based touch-tracking
algorithms. Results show that our technique boosts touch
detection accuracy by 15% and reduces positional error by
55% compared to the next best-performing technique.

Author Keywords
Touch tracking; depth sensing; sensor fusion.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g. HCI):
User interfaces: Input devices and strategies.

INTRODUCTION
Touch interfaces have become ubiquitous for small screens
due to the popularity of touchscreen-based smartphones and
tablets. However, for much larger displays, touchscreens
remain expensive and can be intrusive to install in some
environments. On the other hand, walls, tables, and other
relatively flat surfaces are already present in many spaces.

The introduction of digital projectors and low-cost depth
camera technologies raises the possibility of transforming
these everyday surfaces into large, touch-sensitive compu-
ting experiences.

While free-space hand and finger tracking research spans
several decades of research, starting with seminal work by
Krueger in the Video Place System [10], comparatively
little research has examined finger and touch tracking on
ordinary, unmodified surfaces. This can be attributed to the
difficult challenge of first segmenting a finger from the
background to extract its spatial position and then undertak-
ing the even more challenging task of sensing when a finger
has physically contacted a surface (vs. merely hovering
close to it).

The advent of inexpensive depth cameras offered a promis-
ing potential solution for addressing this challenge. Early
work by Wilson et al. [24] demonstrated the potential of
this approach for detecting touches on arbitrary surfaces.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISS '16, November 06-09, 2016, Niagara Falls, ON, Canada
© 2016 ACM. ISBN 978-1-4503-4248-3/16/11�$15.00
DOI: http://dx.doi.org/10.1145/2992154.2992173

Figure 1. Comparison of depth-camera-based touch track-
ing methods. Our method (DIRECT) is shown in green
and labeled 0. Comparison methods are single-frame mod-
el (1/red), maximum distance model [24] (2/orange), statis-
tical model [7, 25] (3/yellow) and slice finding [6] (4/cyan).

While prior approaches have demonstrated that depth-based
touch tracking should be viable, full exploration of the
design space requires input sensing, which exhibits high
stability and positional accuracy, as well as reliable touch
segmentation/detection with both low false positives and
low false negatives.

Unfortunately, attaining this very high accuracy strains the
capabilities of even the latest generation of depth cameras.
The depth resolution and noise characteristics of current
generation sensors means that fingertips simply merge into
the surface at distances needed to cover reasonably sized
work surfaces (Figure 3a), making precise touch tracking
extremely difficult. This has made it challenging to move
beyond the first proof-of-concept research systems to prac-
tical use in real deployments.

CONTRIBUTIONS
In this paper, we describe DIRECT (Depth and IR En-
hanced Contact Tracking), a new touch-tracking approach
that merges depth and infrared image data (from a single
sensor) to provide significantly enhanced finger tracking
(Figures 1 and 2). Infrared imagery provides precise finger
boundaries, while depth imagery provides precise contact
detection. Additionally, the use of infrared data allows the
system to more robustly reject tracking errors arising from
noisy depth data. This approach allows DIRECT to provide
touch tracking precision to within a single pixel in the depth
image, and overall, finger tracking accuracy approaching
that of conventional touch-screens. Additionally, our ap-
proach makes no assumptions about user position or orien-
tation (in contrast to all prior systems, which require a
priori knowledge of finger orientation to correct for unde-
tected fingertips), nor does it require prior calibration or
background capture.

We describe in detail the technical implementation of
DIRECT and discuss its capabilities and unique characteris-
tics relative to other touch tracking approaches. We further
contribute a multi-technique comparison study – the first
evaluation of its type – where we compare four previously
published methods against one another, as well as against
DIRECT. As we will show, DIRECT readily outperforms
these prior techniques with respect to viable distance, touch
precision, touch stability, multi-finger segmentation, and
touch detection false positives and false negatives.

Additionally, to encourage research in this domain, as well
as facilitate replication and comparative studies, we have
made implementations of DIRECT and our four compara-
tive methods available for download and review at
https://github.com/nneonneo/direct-handtracking.

RELATED WORK
There are many different approaches for touch tracking on
large surfaces. The simplest approach is to create a special
purpose surface, using e.g. cameras [5, 13] or capacitive
sensors [11]. Alternatively, existing surfaces can be retrofit-
ted with sensors, such as acoustic sensors to detect the
sound of a tap [16], or infrared emitters and receivers to
detect occlusion from a finger. There are also methods that
can operate on ad hoc, uninstrumented surfaces. These
systems most often use optical sensors (e.g., cameras [9] or
LIDAR [15]).

Detecting whether a finger has contacted a surface is chal-
lenging with conventional RGB or infrared cameras, which
has inspired several approaches. PlayAnywhere [22]
demonstrated a touch tracking approach based on analyzing
the shadows cast by a finger near the surface. Sugita et al.
[19] detect touches by tracking the visual change in the
fingernail when it is pressed against a surface. TouchLight
[23] uses a stereo pair of cameras, detecting touches when
the finger images pass beyond a virtual plane. Many other
systems use finger dwell time or an external sensor (accel-
erometer [8], microphone, or acoustic sensor [16, 26]) to
detect touch events.

Most related to our present technique are depth camera-
based touch-tracking systems. Depth cameras sense the
physical distance from the sensor to each point in the field
of view, making it possible (in concept) to innately sense
whether a finger has contacted a surface or not. Broadly,
these systems can be placed into two categories:

Background modeling approaches compute and store a
model or snapshot of the depth background. Touches are
detected where the live depth data differs from the back-
ground depth map in specific ways. Wilson [24] uses a
background snapshot computed from the maximum depth
point observed at each pixel over a small window of time.
KinectFusion [7] uses a background model developed by
analyzing the 3D structure of the scene from multiple an-
gles (SLAM), effectively producing a statistically derived
background map. WorldKit [25] also uses a statistical ap-
proach, computing the mean and standard deviation for

Figure 2. The system setup. Left: the Kinect depth camera
is mounted 1.6 m from the table surface. Top right: the
projector and Kinect are rigidly mounted and calibrated
to each other (but not the surface). Bottom right: The ta-
ble surface functions as a touchscreen.

each pixel, modeling both the background and noise. Final-
ly, MirageTable [1] captures a background mesh and ren-
ders foreground hands as particles.

Finger modeling approaches attempt to segment fingers
based on their physical characteristics, and generally do not
require background data. OmniTouch [6] used a template-
finding approach to label finger-like cylindrical slices with-
in depth images. The slices are then merged into fingers,
and finally touch contacts. FlexPad [18] detected and re-
moved hands by analyzing the subsurface scattering of the
Kinect’s structured infrared light pattern, allowing the
background to be uniquely segmented.

Surprisingly few systems attempt to fuse depth sensing with
other sensing modalities for touch tracking. Of the existing
literature on sensor fusion depth-sensing systems, only the
Dante Vision project [17] uses a multisensory approach for
touch tracking, combining depth sensing with thermal im-
aging infrared camera. This is used to improve touch con-
tact detection accuracy (a thermal imprint is left on the
surface upon physical touch), though at the expense of
continuous tracking and high contact latency (~200 ms).

IMPLEMENTATION
We implemented our touch tracking algorithm and compar-
ison techniques in C++ on a 2.66 GHz 3-core Windows PC,
with a Kinect for Windows 2 providing the depth and infra-
red imagery. The Kinect 2 is a time-of-flight depth camera,
which uses active infrared illumination to determine the
distances to objects in the scene. It provides 512x424 pixel
depth and infrared images at 30 frames per second. A BenQ
W1070 projector with a resolution of 1920x1080 is also
mounted above our test surface (a wooden table) to provide
visual feedback.

The Kinect 2 is mounted 1.60 meters above a large table
surface, and the projector is 2.35 meters above the surface
(Figure 2). At the horizontal edges of the Kinect’s field of
view, the table surface is 2.0 meters from the Kinect. Both
the projector and Kinect are securely mounted to the ceil-
ing, and were calibrated to each other using multiple views
of a planar calibration target.

The present configuration allows the projector to project a
1.0×2.0 meter image onto the table surface, with the Kinect
capable of sensing objects across the entire projected area.
At this distance, each projected pixel is 1.0 mm square, and
each Kinect depth pixel is 4.4 mm square at the table sur-
face. Thus, even with this second generation sensor, a typi-
cal fingertip resting on the table is less than 3 depth image
pixels wide, underscoring the sensing challenge.

Our approach combines background modeling and anthro-
pometric modeling approaches. More specifically, DIRECT
models both the background and the user’s arms, hands,
and fingers using separate processes. Our processing pipe-
line is carefully optimized so that it runs at camera frame
rate (30 FPS) using a single core of the PC.

The touch-tracking pipeline is illustrated in Figures 3 and 4.
Figure 3 shows a hand laid flat on the table, which is chal-
lenging for depth-based touch tracking approaches because
the fingertips generally fuse with the background due to
sensor imprecision and noise (Figure 3a). In Figure 3d, we
show that DIRECT can still segment the fingers (labeled in
different colors) right down to the fingertip. Figure 4 shows
another challenging case - a single extended finger raised
60º. This is problematic because there are very few depth
pixels available for the fingertip itself. As before, DIRECT
is able to segment the crucial fingertip.

Background Modeling
Our system uses a statistical model of the background,
inspired in part by the implementation in WorldKit [25]. At
every pixel, we maintain a rolling window of five seconds
of depth data and compute the mean and standard deviation.
This model allows us to establish both a highly accurate
mean depth background, as well as a noise profile at every
pixel in the scene.

With these rolling windows, we support dynamic updating
of the background model. If the standard deviation exceeds
a certain depth-dependent threshold (accounting for higher
average noise further from the sensor), the pixel is tempo-
rarily “stunned” and its background model mean and stand-
ard deviation will be held constant until the moving average

Figure 3. Close-up of touch tracking process for five fingers laid flat on the table. (a) depth image, (b) infrared image, (c) infra-
red edges overlaid on z-score map, (d) segmentation result. In (d), arm pixels are cyan, hand pixels are blue-green, and finger
pixels are combined with fingertip pixels and shown in various shades of green.

drops below the threshold. This approach accurately tracks
long-term changes in the environment (e.g., objects moved
around), while ignoring short-term changes (e.g., actively-
interacting hands and fingers). In our present implementa-
tion, the background is updated in a separate thread, run-
ning at 15 fps to avoid excessively frequent updates. This
type of dynamic background updating is crucial for long-
running systems to deal with shifts in the environment (e.g.,
movement of objects residing on the surface), yet most
existing systems (e.g., [24, 25]) use only a single static
background model captured during initial setup. We note
that highly stationary hands and fingers could be “integrat-
ed into the background” with this approach, though we
observed that, in practice, users rarely stay stationary for
several seconds over top of active touch interfaces.

Infrared Edge Detection
We use the infrared image primarily to detect the boundary
between the fingertip and the surrounding surface. As such,
our first step is to detect edges in the infrared image. The
Kinect 2’s infrared image comes from the same sensor as
the depth data, and thus it is precisely registered to the
depth image. We use a Canny edge filter [2] to locate can-
didate edge pixels in the image (7x7 Sobel filter, with hys-
teresis thresholds of 4000 and 8000), with results shown in
Figure 5. Note the parameters are not specific to the operat-
ing depth or objects in the scene.

After running the Canny edge filter, some edges may have
gaps. These can occur due to e.g., multiple edges meeting.
A common gap-filling technique, image dilation followed

by erosion, is inappropriate for our case due to the small
size of the fingertip. Instead, we employ an edge-linking
[12] algorithm across the edge map, which walks along
Canny edge boundaries and bridges one-pixel breaks be-
tween neighboring edges. After applying this algorithm,
fingertips and hands are usually fully enclosed (Figures 3c
and 4c, pale yellow lines).

Surfaces with a very similar infrared albedo to skin could
cause issues for edge finding. However, anecdotally, we
have found that the shadows cast by the arm and hand (il-
luminated by the active IR emitter found in many depth
cameras), even near the fingertip, helps to increase contrast
(as seen in Figures 3b and 4b).

Iterative Flood-Fill Segmentation
Our touch tracking pipeline consists of a sequence of itera-
tive flood fills, each responsible for a different pixel type:
arm filling, hand filling, finger filling, and fingertip filling.
When each flood fill completes, it triggers the next fill in
the sequence, starting from pixels on its boundary. Critical-
ly, each flooded area is linked to the parent area from which
it was seeded (e.g. the finger fill starts from the hand that it
is attached to), forming a hierarchy of filled objects that
match their respective anthropometric requirements derived
from [3, 4, 14, 21]. For a finger to be successfully segment-
ed (and passed as input to an interface), a complete hierar-
chy must exist – a process that robustly rejects finger-like
objects that are not connected to hands, arms and so on
(e.g., a whiteboard marker laying on a tabletop).

Arm Stage
The first stage is labeling arm pixels, and merging them
into connected arm blobs (Figures 3d and 4d, light blue).
Arm pixels are defined as pixels that are at least 5 cm closer
to the sensor than the background mean, i.e. pixels that are
at least 5 cm above the surface. This high threshold is cho-
sen both to unambiguously distinguish human activity from
background noise (standard deviations at the edge of the
depth map can reach ~1.5 cm, so 5 cm is more than 3 stand-
ard deviations away), and to detect human forearms even
when laid totally flat on the table (6.3 cm is the 2.5th per-
centile diameter of a human forearm).

Figure 4. Close-up of touch tracking process for a finger angled at 60º vertically. (a) depth, (b) infrared, (c) edges and depth
map z-scores, and (d) filled blobs. Refer to Figure 3 for a full color key.

Figure 5. Canny edge detection.

Left: Kinect IR image. Right: Edge map.

Hand Stage
Then, for all arm blobs, our algorithm flood fills down-
wards towards the hand pixels, defined as pixels that are at
least 12 mm from the surface. This threshold was chosen to
segment individual fingers apart from the hand (12 mm is
the 2.5th percentile thickness of a human finger, allowing us
to detect even small fingers laying flat on a table). During
this step, the fill is constrained to avoid pixels with high
depth variance in their local neighborhood. This constraint
ensures that this flood fill does not simply fill into noisy
pixels surrounding the arm. The result is a hand blob at-
tached to the parent arm blob (Figure 3d and 4d, dark blue
blob). If multiple hand blobs are found, only the largest is
taken (to avoid noise-induced “phantom hands”).

Finger Stage
In the third stage, the algorithm fills from the hand blob into
finger pixels, which are defined as pixels that are at least
one standard deviation above from the surface mean. These
pixels are above noise, but are otherwise very close to the
surface. Because of this, we constrain the fill to stay within
the boundaries derived from the infrared edge map. In the
event of a hole in the edge map, the fill will stop at below-
noise pixels and thus will not fill too far. This process pro-
duces a number of finger blobs attached to the hand blob,
and the point at which the finger attaches to the hand is
called the finger base.

Fingertip Stage
Finally, for each finger blob, the algorithm fills further into
the below-noise pixels (fingertip pixels). At this point, the
depth map is not used (as fingers generally merge with
noise), and only the infrared edge constrains the fill. A vast
majority of frames fill successfully, however occasionally,
a gap in the edge map will cause the flood to escape outside
the finger. To mitigate this, our flood fill stops and flags an
overfill error if the fill extends more than 15 cm from the
finger base. This value allows for both the longest human
fingers (mean length 8.6 cm, SD 0.5) and is 2 standard
deviations above the mean palm center to fingertip length
(mean 12.9 cm, SD 0.8), which is the worst-case scenario if
the hand fill stage was only partially successful in flooding
into the hand. Additionally, this permits the use of grasped
pens, markers or styluses used as pointing devices, while
still rejecting out-of-control flood fills that spill out onto the
background.

If an overfill condition is detected, DIRECT deletes the
flooded fingertip pixels and returns a failure indication.
This allows the system to gracefully fall back to depth-only
touch tracking in the event that the IR image is unusable for
any reason (e.g. because there are holes in the edge image).
Crucially, this enables the algorithm to work in cluttered or
complex environments when the edge image may be dam-
aged or unusable, albeit with reduced performance. Other-
wise, if no overfill occurs, the fingertip pixels are added to
the parent finger blob. The resulting finger blobs are seen in
Figure 3d and 4d (varying shades of green).

Touch Point Extraction
During both the finger fill and tip fill, we record the dis-
tance of each finger pixel to the finger base. For each de-
tected finger, we simply place the fingertip at the pixel with
the highest such distance. We found that this pixel corre-
lates extremely well with the fingertip’s actual location, and
furthermore that this point is stable enough that touch posi-
tion smoothing is unnecessary.

If the tip filling failed due to an over-fill, the fingertip’s
position can be estimated using forward projection, by
using the arm and hand positions to determine the orienta-
tion of the finger. However, the resulting estimate will be
substantially noisier, a fact which can be conveyed to a
higher-level filtering or smoothing algorithm.

Touch Contact Detection
To detect if the fingertip is in contact with the surface be-
hind it (i.e. to distinguish hover from contact), we examine
the 5x5 neighborhood around the tip pixel. If any pixel is
more than 1 cm from the background, we mark the finger as
hovering, otherwise the finger is marked as touching the
surface. We then apply hysteresis to avoid rapid changes in
touch state. Although this touch detection approach is sim-
plistic, it is surprisingly robust; we attribute this to the high
precision of our fingertip tracking.

Touch Tracking Properties
The DIRECT approach merges aspects of optical tracking,
background modeling and anthropometric finger modeling
approaches, and therefore exhibits some unique properties
relative to other methods. Compared to depth-only meth-
ods, the touch points detected by DIRECT are more stable,
as the infrared estimation provides pixel-accurate detection
of the fingertip. Consequently, DIRECT requires no tem-
poral touch smoothing to work well, allowing it to have
very low latency (15 ms average latency from input depth
data to output touch point) without sacrificing accuracy.

While DIRECT uses ideas from finger modeling, it does not
directly model the shape of fingers, nor does it make as-
sumptions about the shape of the touch contact area. There-
fore, DIRECT is capable of tracking touches when the
fingers assume unusual configurations, such as holding all
fingers together, performing gestural touches, or holding
objects such as pens and styli.

Lastly, DIRECT provides some additional information
about the hand and fingers beyond just the touch point.
Specifically, it also provides the orientation of the finger
(the vector from the finger base to fingertip), the pose of the
hand, and the arm associated with each touch. This metada-
ta could be used to implement interaction techniques be-
yond simple multitouch, e.g. using the finger angles for
rotational input [20], or to manipulate 3D objects [27], and
using the arm data to enable bimanual interactions.

COMPARATIVE TECHNIQUES
To compare the performance of our technique, we imple-
mented four representative depth-camera-based touch track-
ing methods from the literature (see also Related Work). An

example frame of tracking output from these implementa-
tions can be seen in Figure 1 (see also Video Figure).

Of note, many of our comparison techniques were original-
ly developed using the predecessor of the Kinect 2 we use
(the “Kinect for Windows”, henceforth called Kinect 1 for
simplicity). The Kinect 1 sensor uses structured light, which
projects an infrared speckle pattern, as opposed to the time-
of-flight method used in the Kinect 2. The speckle pattern
renders the infrared image virtually unusable for tracking,
precluding DIRECT-style sensing. The Kinect 1 features
both lower depth image pixel resolution and lower depth
resolution (~4 mm per depth unit at a distance of 2 meters)
than the Kinect 2. We have thus adjusted and tuned the
comparison techniques to work with the Kinect 2 sensor as
best possible.

We also did not use any calibration with these techniques.
Touch tracking systems often employ a calibration stage
where a user touches several points to establish a mapping
between the sensor and known physical points. However, if
the user calibrates without significantly changing their
orientation, this calibration can mask certain orientation-
dependent biases (as we show in our results) and make the
system dependent on the user and finger orientation. Hence,
in our study, we apply only a global calibration between the
depth camera and the projector, and do not calibrate using
detected finger positions.

All of our comparison techniques have a certain number of
“magic numbers” that must be tuned for correct operation
of the system. Furthermore, precise adjustments of these
numbers can be used to trade off between e.g. touch accura-
cy and false touch detection. For the study, we tuned these
numbers to keep false positives acceptably low, as these are
especially damaging to the user experience. Specifically,
we aimed to reduce false positives to less than one false-
positive per five seconds within our target area (2 m2) when
no fingers are present. Although this is still a high rate of
false positives, we found that attempting to further reduce
this rate led to unacceptable insensitivity in two of our
comparison techniques. We tuned each comparison tech-
nique independently, communicating with the system’s
authors when necessary to best reproduce the technique.

Tests on all techniques were done without smoothing of the
touch data. Smoothing could be applied to the output of any
of these approaches and might increase accuracy. However,
this would come at the cost of increased latency and would
tend to hide the merits of the technique itself.

Single-Frame Background Model
Our first comparison technique is a common, naïve tech-
nique often used for simple touch tracking. It uses a back-
ground model consisting of a single captured depth frame.
Candidate touch pixels are simply those that lie between a
minimum and maximum distance threshold from the back-
ground (in our implementation, between 7 and 15 mm from
the surface).

For all background model implementations, we apply a
low-pass boxcar filter followed by thresholding. A connect-
ed-components pass then extracts touch blobs, following
the implementation in [24]. Although most naïve imple-
mentations do not perform this filtering, we found it neces-
sary to avoid excessive noise in the contact tracking.

Maximum Distance Background Model
The second comparison technique models the background
using the maximum depth value seen over a window of
time. This effectively implements a conservative noise
model of the background. Like the single-frame approach,
the captured depth is then processed through a low-pass
filter and thresholded, followed by a connected-components
pass to segment finger touches.

Wilson [24] implements a variation on this technique (pers.
comm.), using a histogram to choose e.g., the 90th percentile
depth value at each pixel to eliminate outliers in the original
Kinect data. With the Kinect 2, we did not observe such
outliers, and so our maximum distance model is effectively
the same as the histogram method. Wilson tested their sys-
tem using a Kinect at a maximum distance of 1.5 metres
from a table. At that distance, Wilson reported anecdotally
that the positional tracking error was about 1.5 cm.

Statistical Background Model
The final background modeling method uses a statistical
approach. This implementation uses the same mean and
standard deviation calculation as the DIRECT method. New
depth frames are converted into Z-scores based on their
differences from the background (specifically, the value of
each pixel, minus the mean, divided by the standard devia-
tion), and the Z-scores are then filtered, thresholded and
connected as in the other methods.

This method closely resembles the background differencing
approach used in WorldKit [25]. It also aims to capture the
essence of the KinectFusion SLAM touch tracking ap-
proach [7], in that it integrates the background profile grad-
ually over time, building a statistical model of the environ-
ment that is much more accurate than any single frame.
However, our replicated approach lacks the spatial averag-
ing of KinectFusion.

Slice Finding and Merging
For our final comparison technique, we chose to implement
the slice-finding approach used in OmniTouch [6]. This
approach locates cylindrical slices in the depth image using
an elastic template, and then links together adjacent slices
to form fingers. Of note, unlike the other approaches, Om-
niTouch requires that the fingers be clearly separated in the
depth image. Furthermore, as it does not use a background
model, it may detect erroneous touches on the surface due
to objects already in the scene; therefore, for the study, we
cleared the table surface of all objects.

The original OmniTouch implementation only supported
fingers oriented horizontally. We therefore extended Om-
niTouch by implementing biaxial template matching –
locating candidate finger slices in both the X- and Y-axes –

and then merging the centroids of these slices into fingers.
Our approach demonstrably locates fingers oriented in any
direction. To best replicate OmniTouch’s true performance,
we also implemented the system‘s finger forward-
projection method. As noted previously, because the fingers
fuse with the depth background upon touch, it is difficult to
estimate the true tip position. In response, OmniTouch uses
the detected finger’s orientation to extend the estimated
touch position 15 mm towards the un-sensed tip [pers.
comm.]. This improvement is not directly applicable to the
previously discussed background-subtraction methods, as
they do not model the finger orientation or shape. Of note,
the original OmniTouch system was designed to operate at
a distance of just 40 cm.

EVALUATION
To assess the accuracy of DIRECT, we ran an evaluation
with 12 participants (3 female; average age 25). All users
were familiar with touch interfaces. Each study session
lasted for roughly 30 minutes, and participants were com-
pensated $10 USD for their time.

Participants were simply told that the table surface was a
touchscreen from the outset, and to touch the surface as
they would any ordinary touchscreen. Users were permitted
to use either hand (including interchangeably) and to use
any finger pose they found comfortable. Users were not
required to remove jewelry or roll up sleeves – several users
conducted the study while wearing long sleeved shirts,
bracelets, watches and rings. Our experiment system ran all
five touch-tracking methods (DIRECT plus the four com-

parison techniques) simultaneously at a consistent 30 fps
(the frame rate of the depth sensor). Please also refer to the
Video Figure.
Tasks
Participants completed a series of small tasks, organized
into three categories. Task order was randomized per partic-
ipant to mitigate order effects. For each task, users were
instructed to stand along one of the two long edges of our
test table (thus changing the orientation of their touches).

Crosshair: Participants placed their fingertip on a projected
crosshair (Figure 6a), after which the experimenter manual-
ly advanced the trial and the touches detected by each
tracker were recorded. This task measured the positional
accuracy of each finger tracking method and touch segmen-
tation accuracy. Crosshairs were arranged in a 4x8 grid
spanning the table surface, but were shown one at a time
and in random order. This task was performed twice for
each edge of the table.

Multitouch Segmentation: Participants were instructed to
place a specific number of fingers within a projected 20 cm
square on the table (Figure 6b). The experimenter manually
advanced the trial and the number of touches reported with-
in the box for each tracker was recorded. This task was
intended to measure the multitouch contact reporting accu-
racy of each technique (i.e., false positive and false negative
touches). Six boxes were specified across the length of the
table, and the number of fingers varied from 1-5 for a total
of 30 trials, randomly ordered. This task was also per-
formed twice for each edge of the table.

Figure 6. Tasks performed by users in our study. (a) crosshair task, (b) multitouch box task,

 (c) line shape tracing task, (d) circle shape tracing task.

Figure 7. Average touch positional error (left) and touch detection rate (right) for each of the five

touch tracking methods. Error bars are standard error.

Shape Tracing: Participants were instructed to trace a par-
ticular projected shape, beginning at the start position indi-
cated with a green triangle (Figures 6c, 6d), and tracing to
the end of the path. For each frame between the start and
end of the trial, we recorded the touch coordinates for each
method. This task was intended to replicate the tracing task
used in OmniTouch [6]. There were three instances of this
task per table edge, one for each shape: horizontal line,
vertical line, and circle.

RESULTS AND DISCUSSION
In our results, we denote the two edges of the table as
“back” and “front”. The top of the Kinect’s image corre-
sponded to the front edge of the table.

Crosshair
The crosshair task allowed us to test both touch positional
accuracy and touch detection rate. Due to potential spuri-
ously-detected touches, we measured accuracy as the mean
distance from the finger to the nearest detected touch point
for each tracker. Touches further than 200 mm from the
finger were not counted, since those touches would clearly
be erroneous. If no touches were detected in range for a
particular tracker, the tracker was considered to have failed
to detect the touch.

In total, we collected 768 trials for each side of the table.
The touch positional accuracy results are summarized in
Figure 7. The accuracy results show a slight but consistent
increase in accuracy across all trackers when users stood at
the front edge of the table.

DIRECT achieved an average Euclidean-distance positional
error of 4.8 mm across all trials, with a 99.3% touch detec-
tion rate. The next best technique, slice finding, had an
average positional error of 11.1 mm and a touch detection
rate of 83.9%. The background modeling methods all per-
formed poorly, with average positional errors of over
40 mm and touch detection rates ranging from 52.1% to
84.8%. Put simply, these methods do not have the necessary
sophistication to segment small finger contacts at the noise
level present when sensing at 1.6 meters.

During development, we noticed that the slice finding
method without forward projection performed very poorly
(~20 mm average error), so it was clear that finger forward
projection was crucial to obtain good accuracy. This is
because these methods cannot accurately locate the finger-
tip in the noise, and so they instead locate a point some-
where along the finger.

Therefore, we also analyzed the accuracy of the four com-
peting approaches by applying a mean offset vector (i.e., a
post hoc global offset). This vector depends on knowing the
precise finger orientation, and thus the offset correction
corresponds to a “calibrating” of the touch algorithm from a
fixed user position and assuming the finger is extended
perpendicular to the table. Consequently, we computed
offsets separately for the front and back user positions.
Because the prior systems recognize neither the user posi-
tion nor finger orientation, this result is purely hypothetical,
but serves as a useful benchmark.

The resulting average offset-corrected errors (Figure 8)
were 4.46 mm for DIRECT (a negligible 0.3 mm improve-
ment), 9.9 mm for the slice finding method (a modest
1.2 mm improvement), and 12.3-12.7 mm for the back-

Figure 8. Average positional error after removing the av-
erage offset vector and assuming a priori knowledge of the
user’s orientation. Error bars are Standard Error.

x
-50 -40 -30 -20 -10 0 10 20 30 40 50

y

-50

-40

-30

-20

-10

0

10

20

30

40

50

 x
-50 -40 -30 -20 -10 0 10 20 30 40 50

y

-50

-40

-30

-20

-10

0

10

20

30

40

50

Figure 9. 95% confidence ellipses for crosshair task from the back of the table (left) and front of the table (right).

X and Y units are in millimetres; colours are as in Figure 8.

ground modeling approaches (a significant 20-30 mm im-
provement). To visualize these errors, we also computed the
95% confidence ellipsoids (Figure 9) for each tracker (note
that the offset correction corresponds to recentering the
ellipsoids). These errors are consistent with prior results
from Wilson [24] and OmniTouch [6], suggesting that our
offset-corrected comparison implementations are reasona-
bly close to the original implementations.

Multitouch Segmentation
With the multitouch segmentation task, we aimed to meas-
ure the false positive and false negative rates for touch
detection with multiple fingers present in a small region.
Under these conditions, touch trackers might merge adja-
cent fingers or detect spurious touches between fingers. The
differences between the back and front sides were not sig-
nificant in this task, so the results have been combined. In
total, 1440 trials were collected.

Detecting a single extended finger is the easiest task. In
single finger trials, DIRECT detected the correct number
95.8% of the time. Single-frame background, maximum
frame background and statistical model background
achieved 52.8%, 66.3% and 35.1% respectively. Slice-
finding was 75.0% accurate.

Detecting several fingers in close proximity is much more
challenging when sensing at 1.6 meters. With all trials
combined, DIRECT detected the correct number of fingers
in 75.5% of trials, more fingers than were present in 2.4%
of trials and fewer fingers than were present in 22.1% of
trials. The three background modeling approaches – single-
frame, maximum frame and statistical model – detected the
correct number of fingers 22.2%, 29.2% and 17.3% of the
time. Very few trials reported more fingers than were pre-
sent: 9, 7 and 4 trials respectively (<0.1% of all trials).
Instead, these methods tended to miss fingers (77.1%,
70.2%, and 82.4% of trials respectively). Finally, the slice-
finding approach detected more fingers in just 9 trials
(<0.1% of trials), fewer fingers in 75.4% of trials, and the
true number of fingers in 24.0% of trials.

We tuned the comparison technique implementations to
minimize spurious touches while nothing was touching the
table. However, our multitouch segmentation results sug-
gest that optimizing for this criterion could have rejected
too many legitimate touches, reducing touch detection rates.
On the other hand, increasing touch sensitivity significantly
increases noise and errant touches. For example, decreasing
the “low boundary” depth threshold in the maximum-
distance background model tracker by a single millimeter
results in hundreds of errant touches detected on the surface
every second, which is clearly not acceptable.

Shape Tracing
Tracking moving fingers is extra challenging as the expo-
sure time of the depth camera produces motion blur across
the moving parts of the frame, reducing accuracy. Further,
as already mentioned above, our comparative methods are
prone to missing fingers. In the case of finger movement,

this will manifest as loss of finger tracking for several
frames. During this period, spurious input would often
cause the traced path to zigzag. For this reason, it was simp-
ly not possible to complete a realistic and useful analysis
with our study data.

However, we can use results reported in OmniTouch [6] as
one point of comparison. Specifically, OmniTouch reports a
mean error of 6.3 mm (SD=3.9 mm) at a sensing distance of
40 cm on a flat notepad. For comparison, DIRECT achieves
a mean error of 2.9 mm (mean SD=2.7 mm) at a sensing
distance of 160 cm (on a flat table).

CONCLUSION
We have presented DIRECT, a touch tracking system
which strategically merges depth and infrared data from an
off-the-shelf infrared depth camera to enable highly accu-
rate touch tracking, even at significant distances from the
sensor. Overall, DIRECT demonstrates greatly improved
touch tracking accuracy (mean error of 4.9 mm) and detec-
tion rate (>99%) – roughly twice as good as the next best
method in the literature, and nearly ten times better than
classic approaches.

There are also immediate ways to further improve our sys-
tem. For example, in our present implementation, DIRECT
outputs integer coordinates on the depth map, which quan-
tizes the X/Y position to 4.4 mm (mean error due to quanti-
zation: 3.1 mm). Averaging pixels at the tip could provide a
sub-pixel estimate, further boosting accuracy. Additionally,
we could apply temporal smoothing to improve touch posi-
tion stability at the expense of latency.

To conclude, we hope that DIRECT’s significantly im-
proved finger tracking accuracy can open new opportunities
in ad hoc touch interfaces and better allow this emerging
computing modality to be explored. We also believe this
advance can help move depth-driven systems from proof-
of-concept to more practical and widespread use.

ACKNOWLEDGMENTS
This research was generously supported by the David and
Lucile Packard Foundation, Qualcomm, and a Google Fac-
ulty Research Award.

REFERENCES
1. Benko, H., Jota, R. and Wilson, A. Miragetable: free-

hand interaction on a projected augmented reality tab-
letop. In Proc. CHI ‘12. 199–208.

2. Canny, J. A Computational Approach To Edge Detec-
tion. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 8(6), 1986, 679-698.

3. Eastman Kodak Company. Kodak's Ergonomic Design
for People at Work, 2nd Edition. 2003, pp. 48-49.

4. Haley, J. Anthropometry and mass distribution for hu-
man analogues. Volume 1, 1988. Aerosp. Med. Res. Lab
Wright-Patterson, Ohio.

5. Han, J. Y. Low-cost multi-touch sensing through frus-
trated total internal reflection. In Proc. UIST ‘05. 115-
118.

6. Harrison, C., Benko, H. and Wilson, A.D. OmniTouch:
wearable multitouch interaction everywhere. In Proc.
UIST ‘11. 441-450.

7. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., New-
combe, R., Kohli, P., Shotton, J., Hodges, S., Freeman,
D., Davison, A. and Fitzgibbon, A. KinectFusion: Real-
time 3D Reconstruction and Interaction Using a Moving
Depth Camera. In Proc. UIST ‘11. 559-568.

8. Kane, S., Avrahami, D., Wobbrock, J., Harrison, B.,
Rea, A., Philipose, M. and LaMarca, A. Bonfire: a no-
madic system for hybrid laptop-tabletop interaction. In
Proc. UIST ‘09. 129-138.

9. Koike, H., Sato, Y. and Kobayashi, Y. Integrating paper
and digital information on EnhancedDesk: a method for
realtime finger tracking on an augmented desk system.
ACM Trans. on Computer-Human Inter., 8(4), 307-322.

10. Krueger, M. W., Gionfriddo, T. and Hinrichsen, K.
VIDEOPLACE — an artificial reality. In Proc. CHI ‘85.
35-40.

11. Lee, S. K., Buxton, W. and Smith, K. C. A multi-touch
three dimensional touch-sensitive tablet. In Proc. CHI
‘85. 21-25.

12. Maeda, J., Iizawa, T., Ishizaka, T., Ishikawa, C. and
Suzuki, Y. Segmentation of Natural Images Using Ani-
sotropic Diffusion and Linking of Boundary Edges. Pat-
tern Recognition, 31(12), 1998.

13. Matsushita, N. and Rekimoto, J. HoloWall: designing a
finger, hand, body, and object sensitive wall. In Proc.
UIST ‘97. 209-210.

14. NASA. Anthropometry and Biomechanics. NASA-
STD-3000: Man-Systems Integration Standards, Vol-
ume 1, Section 3. Revision B, July 1995.

15. Paradiso, J., Hsiao, K., Strickon, J., Lifton, J. and Adler,
A. Sensor Systems for Interactive Surfaces. IBM Sys-
tems Journal, Volume 39, Nos. 3 & 4, October 2000, pp.
892-914.

16. Paradiso, J., Leo, C., Checka, N. and Hsiao, K. Passive
acoustic sensing for tracking knocks atop large interac-
tive displays. In Proc. IEEE Sensors ‘02. 521-527.

17. Saba, E.N., Larson, E.C. and Patel, S.N. Dante vision:
In-air and touch gesture sensing for natural surface in-
teraction with combined depth and thermal cameras. In
Proc. IEEE ESPA ‘12. 167-170.

18. Steimle, J., Jordt, A. and Maes, P. Flexpad: highly flexi-
ble bending interactions for projected handheld displays.
In Proc. CHI ‘13. 237-246.

19. Sugita, N., Iwai, D. and Sato K. Touch Sensing by Im-
age Analysis of Fingernail. In Proc. SICE Annual Con-
ference ‘08. 1520-1525.

20. Wang, F. and Ren, X. Empirical evaluation for finger
input properties in multi-touch interaction. In Proc. CHI
‘09. 1063-1072.

21. White, R. M. Comparative anthropometry of the hand.
No. NATICK/CEMEL-229. Army Natrick Research and
Development Labs, MA. Clothing Equipment and Mate-
rials Engineering Lab, 1980.

22. Wilson, A. PlayAnywhere: A Compact Interactive Tab-
letop Projection-Vision System. In Proc. UIST ‘05. 83-
92.

23. Wilson, A. TouchLight: An Imaging Touch Screen and
Display for Gesture-Based Interaction. In Proc. ICMI
‘04. 69-76.

24. Wilson, A. Using a depth camera as a touch sensor. In
Proc. ITS ‘10. 69-72.

25. Xiao, R., Harrison, C. and Hudson, S. E. WorldKit:
Rapid and Easy Creation of Ad-hoc Interactive Applica-
tions on Everyday Surfaces. In Proc. CHI ‘13. 879-888.

26. Xiao, R., Lew, G., Marsanico, J., Hariharan, D., Hud-
son, S.E. and Harrison, C. Toffee: enabling ad hoc,
around-device interaction with acoustic time-of-arrival
correlation. In Proc. MobileHCI ‘14. 67-76.

27. Xiao, R., Schwarz, J. and Harrison, C. Estimating 3D
Finger Angle on Commodity Touchscreens. In Proc. ITS
‘15. 47-50.

