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ABSTRACT 
Several generations of inexpensive depth cameras have 
opened the possibility for new kinds of interaction on eve-
ryday surfaces. A number of research systems have demon-
strated that depth cameras, combined with projectors for 
output, can turn nearly any reasonably flat surface into a 
touch-sensitive display. However, even with the latest gen-
eration of depth cameras, it has been difficult to obtain 
sufficient sensing fidelity across a table-sized surface to get 
much beyond a proof-of-concept demonstration. In this 
paper we present DIRECT, a novel touch-tracking algo-
rithm that merges depth and infrared imagery captured by a 
commodity sensor. This yields significantly better touch 
tracking than from depth data alone, as well as any prior 
system. Further extending prior work, DIRECT supports 
arbitrary user orientation and requires no prior calibration 
or background capture. We describe the implementation of 
our system and quantify its accuracy through a comparison 
study of previously published, depth-based touch-tracking 
algorithms. Results show that our technique boosts touch 
detection accuracy by 15% and reduces positional error by 
55% compared to the next best-performing technique. 
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INTRODUCTION 
Touch interfaces have become ubiquitous for small screens 
due to the popularity of touchscreen-based smartphones and 
tablets. However, for much larger displays, touchscreens 
remain expensive and can be intrusive to install in some 
environments. On the other hand, walls, tables, and other 
relatively flat surfaces are already present in many spaces. 

The introduction of digital projectors and low-cost depth 
camera technologies raises the possibility of transforming 
these everyday surfaces into large, touch-sensitive compu-
ting experiences. 

While free-space hand and finger tracking research spans 
several decades of research, starting with seminal work by 
Krueger in the Video Place System [10], comparatively 
little research has examined finger and touch tracking on 
ordinary, unmodified surfaces. This can be attributed to the 
difficult challenge of first segmenting a finger from the 
background to extract its spatial position and then undertak-
ing the even more challenging task of sensing when a finger 
has physically contacted a surface (vs. merely hovering 
close to it). 

The advent of inexpensive depth cameras offered a promis-
ing potential solution for addressing this challenge. Early 
work by Wilson et al. [24] demonstrated the potential of 
this approach for detecting touches on arbitrary surfaces. 
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Figure 1. Comparison of depth-camera-based touch track-
ing methods. Our method (DIRECT) is shown in green 
and labeled 0. Comparison methods are single-frame mod-
el (1/red), maximum distance model [24] (2/orange), statis-
tical model [7, 25] (3/yellow) and slice finding [6] (4/cyan).  



 

While prior approaches have demonstrated that depth-based 
touch tracking should be viable, full exploration of the 
design space requires input sensing, which exhibits high 
stability and positional accuracy, as well as reliable touch 
segmentation/detection with both low false positives and 
low false negatives.  

Unfortunately, attaining this very high accuracy strains the 
capabilities of even the latest generation of depth cameras. 
The depth resolution and noise characteristics of current 
generation sensors means that fingertips simply merge into 
the surface at distances needed to cover reasonably sized 
work surfaces (Figure 3a), making precise touch tracking 
extremely difficult. This has made it challenging to move 
beyond the first proof-of-concept research systems to prac-
tical use in real deployments. 

CONTRIBUTIONS 
In this paper, we describe DIRECT (Depth and IR En-
hanced Contact Tracking), a new touch-tracking approach 
that merges depth and infrared image data (from a single 
sensor) to provide significantly enhanced finger tracking 
(Figures 1 and 2). Infrared imagery provides precise finger 
boundaries, while depth imagery provides precise contact 
detection. Additionally, the use of infrared data allows the 
system to more robustly reject tracking errors arising from 
noisy depth data. This approach allows DIRECT to provide 
touch tracking precision to within a single pixel in the depth 
image, and overall, finger tracking accuracy approaching 
that of conventional touch-screens. Additionally, our ap-
proach makes no assumptions about user position or orien-
tation (in contrast to all prior systems, which require a 
priori knowledge of finger orientation to correct for unde-
tected fingertips), nor does it require prior calibration or 
background capture. 

We describe in detail the technical implementation of 
DIRECT and discuss its capabilities and unique characteris-
tics relative to other touch tracking approaches. We further 
contribute a multi-technique comparison study – the first 
evaluation of its type – where we compare four previously 
published methods against one another, as well as against 
DIRECT. As we will show, DIRECT readily outperforms 
these prior techniques with respect to viable distance, touch 
precision, touch stability, multi-finger segmentation, and 
touch detection false positives and false negatives. 

Additionally, to encourage research in this domain, as well 
as facilitate replication and comparative studies, we have 
made implementations of DIRECT and our four compara-
tive methods available for download and review at 
https://github.com/nneonneo/direct-handtracking.  

RELATED WORK 
There are many different approaches for touch tracking on 
large surfaces. The simplest approach is to create a special 
purpose surface, using e.g. cameras [5, 13] or capacitive 
sensors [11]. Alternatively, existing surfaces can be retrofit-
ted with sensors, such as acoustic sensors to detect the 
sound of a tap [16], or infrared emitters and receivers to 
detect occlusion from a finger. There are also methods that 
can operate on ad hoc, uninstrumented surfaces. These 
systems most often use optical sensors (e.g., cameras [9] or 
LIDAR [15]). 

Detecting whether a finger has contacted a surface is chal-
lenging with conventional RGB or infrared cameras, which 
has inspired several approaches. PlayAnywhere [22] 
demonstrated a touch tracking approach based on analyzing 
the shadows cast by a finger near the surface. Sugita et al. 
[19] detect touches by tracking the visual change in the 
fingernail when it is pressed against a surface. TouchLight 
[23] uses a stereo pair of cameras, detecting touches when 
the finger images pass beyond a virtual plane. Many other 
systems use finger dwell time or an external sensor (accel-
erometer [8], microphone, or acoustic sensor [16, 26]) to 
detect touch events.  

Most related to our present technique are depth camera-
based touch-tracking systems. Depth cameras sense the 
physical distance from the sensor to each point in the field 
of view, making it possible (in concept) to innately sense 
whether a finger has contacted a surface or not. Broadly, 
these systems can be placed into two categories: 

Background modeling approaches compute and store a 
model or snapshot of the depth background. Touches are 
detected where the live depth data differs from the back-
ground depth map in specific ways. Wilson [24] uses a 
background snapshot computed from the maximum depth 
point observed at each pixel over a small window of time. 
KinectFusion [7] uses a background model developed by 
analyzing the 3D structure of the scene from multiple an-
gles (SLAM), effectively producing a statistically derived 
background map. WorldKit [25] also uses a statistical ap-
proach, computing the mean and standard deviation for 

 
Figure 2. The system setup. Left: the Kinect depth camera 
is mounted 1.6 m from the table surface. Top right: the 
projector and Kinect are rigidly mounted and calibrated 
to each other (but not the surface). Bottom right: The ta-
ble surface functions as a touchscreen. 



 

each pixel, modeling both the background and noise. Final-
ly, MirageTable [1] captures a background mesh and ren-
ders foreground hands as particles. 

Finger modeling approaches attempt to segment fingers 
based on their physical characteristics, and generally do not 
require background data. OmniTouch [6] used a template-
finding approach to label finger-like cylindrical slices with-
in depth images. The slices are then merged into fingers, 
and finally touch contacts. FlexPad [18] detected and re-
moved hands by analyzing the subsurface scattering of the 
Kinect’s structured infrared light pattern, allowing the 
background to be uniquely segmented. 

Surprisingly few systems attempt to fuse depth sensing with 
other sensing modalities for touch tracking. Of the existing 
literature on sensor fusion depth-sensing systems, only the 
Dante Vision project [17] uses a multisensory approach for 
touch tracking, combining depth sensing with thermal im-
aging infrared camera. This is used to improve touch con-
tact detection accuracy (a thermal imprint is left on the 
surface upon physical touch), though at the expense of 
continuous tracking and high contact latency (~200 ms). 

IMPLEMENTATION 
We implemented our touch tracking algorithm and compar-
ison techniques in C++ on a 2.66 GHz 3-core Windows PC, 
with a Kinect for Windows 2 providing the depth and infra-
red imagery. The Kinect 2 is a time-of-flight depth camera, 
which uses active infrared illumination to determine the 
distances to objects in the scene. It provides 512x424 pixel 
depth and infrared images at 30 frames per second. A BenQ 
W1070 projector with a resolution of 1920x1080 is also 
mounted above our test surface (a wooden table) to provide 
visual feedback. 

The Kinect 2 is mounted 1.60 meters above a large table 
surface, and the projector is 2.35 meters above the surface 
(Figure 2). At the horizontal edges of the Kinect’s field of 
view, the table surface is 2.0 meters from the Kinect. Both 
the projector and Kinect are securely mounted to the ceil-
ing, and were calibrated to each other using multiple views 
of a planar calibration target. 

The present configuration allows the projector to project a 
1.0×2.0 meter image onto the table surface, with the Kinect 
capable of sensing objects across the entire projected area. 
At this distance, each projected pixel is 1.0 mm square, and 
each Kinect depth pixel is 4.4 mm square at the table sur-
face. Thus, even with this second generation sensor, a typi-
cal fingertip resting on the table is less than 3 depth image 
pixels wide, underscoring the sensing challenge. 

Our approach combines background modeling and anthro-
pometric modeling approaches. More specifically, DIRECT 
models both the background and the user’s arms, hands, 
and fingers using separate processes. Our processing pipe-
line is carefully optimized so that it runs at camera frame 
rate (30 FPS) using a single core of the PC. 

The touch-tracking pipeline is illustrated in Figures 3 and 4. 
Figure 3 shows a hand laid flat on the table, which is chal-
lenging for depth-based touch tracking approaches because 
the fingertips generally fuse with the background due to 
sensor imprecision and noise (Figure 3a). In Figure 3d, we 
show that DIRECT can still segment the fingers (labeled in 
different colors) right down to the fingertip. Figure 4 shows 
another challenging case - a single extended finger raised 
60º. This is problematic because there are very few depth 
pixels available for the fingertip itself. As before, DIRECT 
is able to segment the crucial fingertip. 

Background Modeling 
Our system uses a statistical model of the background, 
inspired in part by the implementation in WorldKit [25]. At 
every pixel, we maintain a rolling window of five seconds 
of depth data and compute the mean and standard deviation. 
This model allows us to establish both a highly accurate 
mean depth background, as well as a noise profile at every 
pixel in the scene.  

With these rolling windows, we support dynamic updating 
of the background model. If the standard deviation exceeds 
a certain depth-dependent threshold (accounting for higher 
average noise further from the sensor), the pixel is tempo-
rarily “stunned” and its background model mean and stand-
ard deviation will be held constant until the moving average 

 
Figure 3. Close-up of touch tracking process for five fingers laid flat on the table. (a) depth image, (b) infrared image, (c) infra-
red edges overlaid on z-score map, (d) segmentation result. In (d), arm pixels are cyan, hand pixels are blue-green, and finger 
pixels are combined with fingertip pixels and shown in various shades of green. 



 

drops below the threshold. This approach accurately tracks 
long-term changes in the environment (e.g., objects moved 
around), while ignoring short-term changes (e.g., actively-
interacting hands and fingers). In our present implementa-
tion, the background is updated in a separate thread, run-
ning at 15 fps to avoid excessively frequent updates. This 
type of dynamic background updating is crucial for long-
running systems to deal with shifts in the environment (e.g., 
movement of objects residing on the surface), yet most 
existing systems (e.g., [24, 25]) use only a single static 
background model captured during initial setup. We note 
that highly stationary hands and fingers could be “integrat-
ed into the background” with this approach, though we 
observed that, in practice, users rarely stay stationary for 
several seconds over top of active touch interfaces. 

Infrared Edge Detection 
We use the infrared image primarily to detect the boundary 
between the fingertip and the surrounding surface. As such, 
our first step is to detect edges in the infrared image. The 
Kinect 2’s infrared image comes from the same sensor as 
the depth data, and thus it is precisely registered to the 
depth image. We use a Canny edge filter [2] to locate can-
didate edge pixels in the image (7x7 Sobel filter, with hys-
teresis thresholds of 4000 and 8000), with results shown in 
Figure 5. Note the parameters are not specific to the operat-
ing depth or objects in the scene.  

After running the Canny edge filter, some edges may have 
gaps. These can occur due to e.g., multiple edges meeting. 
A common gap-filling technique, image dilation followed 

by erosion, is inappropriate for our case due to the small 
size of the fingertip. Instead, we employ an edge-linking 
[12] algorithm across the edge map, which walks along 
Canny edge boundaries and bridges one-pixel breaks be-
tween neighboring edges. After applying this algorithm, 
fingertips and hands are usually fully enclosed (Figures 3c 
and 4c, pale yellow lines).  

Surfaces with a very similar infrared albedo to skin could 
cause issues for edge finding. However, anecdotally, we 
have found that the shadows cast by the arm and hand (il-
luminated by the active IR emitter found in many depth 
cameras), even near the fingertip, helps to increase contrast 
(as seen in Figures 3b and 4b). 

Iterative Flood-Fill Segmentation 
Our touch tracking pipeline consists of a sequence of itera-
tive flood fills, each responsible for a different pixel type: 
arm filling, hand filling, finger filling, and fingertip filling. 
When each flood fill completes, it triggers the next fill in 
the sequence, starting from pixels on its boundary. Critical-
ly, each flooded area is linked to the parent area from which 
it was seeded (e.g. the finger fill starts from the hand that it 
is attached to), forming a hierarchy of filled objects that 
match their respective anthropometric requirements derived 
from [3, 4, 14, 21]. For a finger to be successfully segment-
ed (and passed as input to an interface), a complete hierar-
chy must exist – a process that robustly rejects finger-like 
objects that are not connected to hands, arms and so on 
(e.g., a whiteboard marker laying on a tabletop).  

Arm Stage 
The first stage is labeling arm pixels, and merging them 
into connected arm blobs (Figures 3d and 4d, light blue). 
Arm pixels are defined as pixels that are at least 5 cm closer 
to the sensor than the background mean, i.e. pixels that are 
at least 5 cm above the surface. This high threshold is cho-
sen both to unambiguously distinguish human activity from 
background noise (standard deviations at the edge of the 
depth map can reach ~1.5 cm, so 5 cm is more than 3 stand-
ard deviations away), and to detect human forearms even 
when laid totally flat on the table (6.3 cm is the 2.5th per-
centile diameter of a human forearm).  

 
Figure 4. Close-up of touch tracking process for a finger angled at 60º vertically. (a) depth, (b) infrared, (c) edges and depth 
map z-scores, and (d) filled blobs. Refer to Figure 3 for a full color key. 

 
Figure 5. Canny edge detection.  

Left: Kinect IR image. Right: Edge map. 



 

Hand Stage 
Then, for all arm blobs, our algorithm flood fills down-
wards towards the hand pixels, defined as pixels that are at 
least 12 mm from the surface. This threshold was chosen to 
segment individual fingers apart from the hand (12 mm is 
the 2.5th percentile thickness of a human finger, allowing us 
to detect even small fingers laying flat on a table). During 
this step, the fill is constrained to avoid pixels with high 
depth variance in their local neighborhood. This constraint 
ensures that this flood fill does not simply fill into noisy 
pixels surrounding the arm. The result is a hand blob at-
tached to the parent arm blob (Figure 3d and 4d, dark blue 
blob). If multiple hand blobs are found, only the largest is 
taken (to avoid noise-induced “phantom hands”). 

Finger Stage 
In the third stage, the algorithm fills from the hand blob into 
finger pixels, which are defined as pixels that are at least 
one standard deviation above from the surface mean. These 
pixels are above noise, but are otherwise very close to the 
surface. Because of this, we constrain the fill to stay within 
the boundaries derived from the infrared edge map. In the 
event of a hole in the edge map, the fill will stop at below-
noise pixels and thus will not fill too far. This process pro-
duces a number of finger blobs attached to the hand blob, 
and the point at which the finger attaches to the hand is 
called the finger base. 

Fingertip Stage 
Finally, for each finger blob, the algorithm fills further into 
the below-noise pixels (fingertip pixels). At this point, the 
depth map is not used (as fingers generally merge with 
noise), and only the infrared edge constrains the fill. A vast 
majority of frames fill successfully, however occasionally, 
a gap in the edge map will cause the flood to escape outside 
the finger. To mitigate this, our flood fill stops and flags an 
overfill error if the fill extends more than 15 cm from the 
finger base. This value allows for both the longest human 
fingers (mean length 8.6 cm, SD 0.5) and is 2 standard 
deviations above the mean palm center to fingertip length 
(mean 12.9 cm, SD 0.8), which is the worst-case scenario if 
the hand fill stage was only partially successful in flooding 
into the hand. Additionally, this permits the use of grasped 
pens, markers or styluses used as pointing devices, while 
still rejecting out-of-control flood fills that spill out onto the 
background.  

If an overfill condition is detected, DIRECT deletes the 
flooded fingertip pixels and returns a failure indication. 
This allows the system to gracefully fall back to depth-only 
touch tracking in the event that the IR image is unusable for 
any reason (e.g. because there are holes in the edge image). 
Crucially, this enables the algorithm to work in cluttered or 
complex environments when the edge image may be dam-
aged or unusable, albeit with reduced performance. Other-
wise, if no overfill occurs, the fingertip pixels are added to 
the parent finger blob. The resulting finger blobs are seen in 
Figure 3d and 4d (varying shades of green). 

Touch Point Extraction 
During both the finger fill and tip fill, we record the dis-
tance of each finger pixel to the finger base. For each de-
tected finger, we simply place the fingertip at the pixel with 
the highest such distance. We found that this pixel corre-
lates extremely well with the fingertip’s actual location, and 
furthermore that this point is stable enough that touch posi-
tion smoothing is unnecessary. 

If the tip filling failed due to an over-fill, the fingertip’s 
position can be estimated using forward projection, by 
using the arm and hand positions to determine the orienta-
tion of the finger. However, the resulting estimate will be 
substantially noisier, a fact which can be conveyed to a 
higher-level filtering or smoothing algorithm. 

Touch Contact Detection 
To detect if the fingertip is in contact with the surface be-
hind it (i.e. to distinguish hover from contact), we examine 
the 5x5 neighborhood around the tip pixel. If any pixel is 
more than 1 cm from the background, we mark the finger as 
hovering, otherwise the finger is marked as touching the 
surface. We then apply hysteresis to avoid rapid changes in 
touch state. Although this touch detection approach is sim-
plistic, it is surprisingly robust; we attribute this to the high 
precision of our fingertip tracking. 

Touch Tracking Properties 
The DIRECT approach merges aspects of optical tracking, 
background modeling and anthropometric finger modeling 
approaches, and therefore exhibits some unique properties 
relative to other methods. Compared to depth-only meth-
ods, the touch points detected by DIRECT are more stable, 
as the infrared estimation provides pixel-accurate detection 
of the fingertip. Consequently, DIRECT requires no tem-
poral touch smoothing to work well, allowing it to have 
very low latency (15 ms average latency from input depth 
data to output touch point) without sacrificing accuracy.  

While DIRECT uses ideas from finger modeling, it does not 
directly model the shape of fingers, nor does it make as-
sumptions about the shape of the touch contact area. There-
fore, DIRECT is capable of tracking touches when the 
fingers assume unusual configurations, such as holding all 
fingers together, performing gestural touches, or holding 
objects such as pens and styli. 

Lastly, DIRECT provides some additional information 
about the hand and fingers beyond just the touch point. 
Specifically, it also provides the orientation of the finger 
(the vector from the finger base to fingertip), the pose of the 
hand, and the arm associated with each touch. This metada-
ta could be used to implement interaction techniques be-
yond simple multitouch, e.g. using the finger angles for 
rotational input [20], or to manipulate 3D objects [27], and 
using the arm data to enable bimanual interactions. 

COMPARATIVE TECHNIQUES 
To compare the performance of our technique, we imple-
mented four representative depth-camera-based touch track-
ing methods from the literature (see also Related Work). An 



 

example frame of tracking output from these implementa-
tions can be seen in Figure 1 (see also Video Figure). 

Of note, many of our comparison techniques were original-
ly developed using the predecessor of the Kinect 2 we use 
(the “Kinect for Windows”, henceforth called Kinect 1 for 
simplicity). The Kinect 1 sensor uses structured light, which 
projects an infrared speckle pattern, as opposed to the time-
of-flight method used in the Kinect 2. The speckle pattern 
renders the infrared image virtually unusable for tracking, 
precluding DIRECT-style sensing. The Kinect 1 features 
both lower depth image pixel resolution and lower depth 
resolution (~4 mm per depth unit at a distance of 2 meters) 
than the Kinect 2. We have thus adjusted and tuned the 
comparison techniques to work with the Kinect 2 sensor as 
best possible. 

We also did not use any calibration with these techniques. 
Touch tracking systems often employ a calibration stage 
where a user touches several points to establish a mapping 
between the sensor and known physical points. However, if 
the user calibrates without significantly changing their 
orientation, this calibration can mask certain orientation-
dependent biases (as we show in our results) and make the 
system dependent on the user and finger orientation. Hence, 
in our study, we apply only a global calibration between the 
depth camera and the projector, and do not calibrate using 
detected finger positions. 

All of our comparison techniques have a certain number of 
“magic numbers” that must be tuned for correct operation 
of the system. Furthermore, precise adjustments of these 
numbers can be used to trade off between e.g. touch accura-
cy and false touch detection. For the study, we tuned these 
numbers to keep false positives acceptably low, as these are 
especially damaging to the user experience. Specifically, 
we aimed to reduce false positives to less than one false-
positive per five seconds within our target area (2 m2) when 
no fingers are present. Although this is still a high rate of 
false positives, we found that attempting to further reduce 
this rate led to unacceptable insensitivity in two of our 
comparison techniques. We tuned each comparison tech-
nique independently, communicating with the system’s 
authors when necessary to best reproduce the technique. 

Tests on all techniques were done without smoothing of the 
touch data. Smoothing could be applied to the output of any 
of these approaches and might increase accuracy. However, 
this would come at the cost of increased latency and would 
tend to hide the merits of the technique itself. 

Single-Frame Background Model 
Our first comparison technique is a common, naïve tech-
nique often used for simple touch tracking. It uses a back-
ground model consisting of a single captured depth frame. 
Candidate touch pixels are simply those that lie between a 
minimum and maximum distance threshold from the back-
ground (in our implementation, between 7 and 15 mm from 
the surface). 

For all background model implementations, we apply a 
low-pass boxcar filter followed by thresholding. A connect-
ed-components pass then extracts touch blobs, following 
the implementation in [24]. Although most naïve imple-
mentations do not perform this filtering, we found it neces-
sary to avoid excessive noise in the contact tracking. 

Maximum Distance Background Model 
The second comparison technique models the background 
using the maximum depth value seen over a window of 
time. This effectively implements a conservative noise 
model of the background. Like the single-frame approach, 
the captured depth is then processed through a low-pass 
filter and thresholded, followed by a connected-components 
pass to segment finger touches. 

Wilson [24] implements a variation on this technique (pers. 
comm.), using a histogram to choose e.g., the 90th percentile 
depth value at each pixel to eliminate outliers in the original 
Kinect data. With the Kinect 2, we did not observe such 
outliers, and so our maximum distance model is effectively 
the same as the histogram method. Wilson tested their sys-
tem using a Kinect at a maximum distance of 1.5 metres 
from a table. At that distance, Wilson reported anecdotally 
that the positional tracking error was about 1.5 cm. 

Statistical Background Model 
The final background modeling method uses a statistical 
approach. This implementation uses the same mean and 
standard deviation calculation as the DIRECT method. New 
depth frames are converted into Z-scores based on their 
differences from the background (specifically, the value of 
each pixel, minus the mean, divided by the standard devia-
tion), and the Z-scores are then filtered, thresholded and 
connected as in the other methods. 

This method closely resembles the background differencing 
approach used in WorldKit [25]. It also aims to capture the 
essence of the KinectFusion SLAM touch tracking ap-
proach [7], in that it integrates the background profile grad-
ually over time, building a statistical model of the environ-
ment that is much more accurate than any single frame. 
However, our replicated approach lacks the spatial averag-
ing of KinectFusion. 

Slice Finding and Merging 
For our final comparison technique, we chose to implement 
the slice-finding approach used in OmniTouch [6]. This 
approach locates cylindrical slices in the depth image using 
an elastic template, and then links together adjacent slices 
to form fingers. Of note, unlike the other approaches, Om-
niTouch requires that the fingers be clearly separated in the 
depth image. Furthermore, as it does not use a background 
model, it may detect erroneous touches on the surface due 
to objects already in the scene; therefore, for the study, we 
cleared the table surface of all objects. 

The original OmniTouch implementation only supported 
fingers oriented horizontally. We therefore extended Om-
niTouch by implementing biaxial template matching – 
locating candidate finger slices in both the X- and Y-axes – 



 

and then merging the centroids of these slices into fingers. 
Our approach demonstrably locates fingers oriented in any 
direction. To best replicate OmniTouch’s true performance, 
we also implemented the system‘s finger forward-
projection method. As noted previously, because the fingers 
fuse with the depth background upon touch, it is difficult to 
estimate the true tip position. In response, OmniTouch uses 
the detected finger’s orientation to extend the estimated 
touch position 15 mm towards the un-sensed tip [pers. 
comm.]. This improvement is not directly applicable to the 
previously discussed background-subtraction methods, as 
they do not model the finger orientation or shape. Of note, 
the original OmniTouch system was designed to operate at 
a distance of just 40 cm. 

EVALUATION 
To assess the accuracy of DIRECT, we ran an evaluation 
with 12 participants (3 female; average age 25). All users 
were familiar with touch interfaces. Each study session 
lasted for roughly 30 minutes, and participants were com-
pensated $10 USD for their time.  

Participants were simply told that the table surface was a 
touchscreen from the outset, and to touch the surface as 
they would any ordinary touchscreen. Users were permitted 
to use either hand (including interchangeably) and to use 
any finger pose they found comfortable. Users were not 
required to remove jewelry or roll up sleeves – several users 
conducted the study while wearing long sleeved shirts, 
bracelets, watches and rings. Our experiment system ran all 
five touch-tracking methods (DIRECT plus the four com-

parison techniques) simultaneously at a consistent 30 fps 
(the frame rate of the depth sensor). Please also refer to the 
Video Figure.  
Tasks 
Participants completed a series of small tasks, organized 
into three categories. Task order was randomized per partic-
ipant to mitigate order effects. For each task, users were 
instructed to stand along one of the two long edges of our 
test table (thus changing the orientation of their touches).  

Crosshair: Participants placed their fingertip on a projected 
crosshair (Figure 6a), after which the experimenter manual-
ly advanced the trial and the touches detected by each 
tracker were recorded. This task measured the positional 
accuracy of each finger tracking method and touch segmen-
tation accuracy. Crosshairs were arranged in a 4x8 grid 
spanning the table surface, but were shown one at a time 
and in random order. This task was performed twice for 
each edge of the table. 

Multitouch Segmentation: Participants were instructed to 
place a specific number of fingers within a projected 20 cm 
square on the table (Figure 6b). The experimenter manually 
advanced the trial and the number of touches reported with-
in the box for each tracker was recorded. This task was 
intended to measure the multitouch contact reporting accu-
racy of each technique (i.e., false positive and false negative 
touches). Six boxes were specified across the length of the 
table, and the number of fingers varied from 1-5 for a total 
of 30 trials, randomly ordered. This task was also per-
formed twice for each edge of the table. 

 
Figure 6. Tasks performed by users in our study. (a) crosshair task, (b) multitouch box task, 

 (c) line shape tracing task, (d) circle shape tracing task. 

                                  
Figure 7. Average touch positional error (left) and touch detection rate (right) for each of the five  

touch tracking methods. Error bars are standard error. 



 

Shape Tracing: Participants were instructed to trace a par-
ticular projected shape, beginning at the start position indi-
cated with a green triangle (Figures 6c, 6d), and tracing to 
the end of the path. For each frame between the start and 
end of the trial, we recorded the touch coordinates for each 
method. This task was intended to replicate the tracing task 
used in OmniTouch [6]. There were three instances of this 
task per table edge, one for each shape: horizontal line, 
vertical line, and circle. 

RESULTS AND DISCUSSION 
In our results, we denote the two edges of the table as 
“back” and “front”. The top of the Kinect’s image corre-
sponded to the front edge of the table. 

Crosshair 
The crosshair task allowed us to test both touch positional 
accuracy and touch detection rate. Due to potential spuri-
ously-detected touches, we measured accuracy as the mean 
distance from the finger to the nearest detected touch point 
for each tracker. Touches further than 200 mm from the 
finger were not counted, since those touches would clearly 
be erroneous. If no touches were detected in range for a 
particular tracker, the tracker was considered to have failed 
to detect the touch. 

In total, we collected 768 trials for each side of the table. 
The touch positional accuracy results are summarized in 
Figure 7. The accuracy results show a slight but consistent 
increase in accuracy across all trackers when users stood at 
the front edge of the table.  

DIRECT achieved an average Euclidean-distance positional 
error of 4.8 mm across all trials, with a 99.3% touch detec-
tion rate. The next best technique, slice finding, had an 
average positional error of 11.1 mm and a touch detection 
rate of 83.9%. The background modeling methods all per-
formed poorly, with average positional errors of over 
40 mm and touch detection rates ranging from 52.1% to 
84.8%. Put simply, these methods do not have the necessary 
sophistication to segment small finger contacts at the noise 
level present when sensing at 1.6 meters. 

During development, we noticed that the slice finding 
method without forward projection performed very poorly 
(~20 mm average error), so it was clear that finger forward 
projection was crucial to obtain good accuracy. This is 
because these methods cannot accurately locate the finger-
tip in the noise, and so they instead locate a point some-
where along the finger. 

Therefore, we also analyzed the accuracy of the four com-
peting approaches by applying a mean offset vector (i.e., a 
post hoc global offset). This vector depends on knowing the 
precise finger orientation, and thus the offset correction 
corresponds to a “calibrating” of the touch algorithm from a 
fixed user position and assuming the finger is extended 
perpendicular to the table. Consequently, we computed 
offsets separately for the front and back user positions. 
Because the prior systems recognize neither the user posi-
tion nor finger orientation, this result is purely hypothetical, 
but serves as a useful benchmark. 

The resulting average offset-corrected errors (Figure 8) 
were 4.46 mm for DIRECT (a negligible 0.3 mm improve-
ment), 9.9 mm for the slice finding method (a modest 
1.2 mm improvement), and 12.3-12.7 mm for the back-

 
Figure 8. Average positional error after removing the av-
erage offset vector and assuming a priori knowledge of the 
user’s orientation. Error bars are Standard Error. 
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Figure 9. 95% confidence ellipses for crosshair task from the back of the table (left) and front of the table (right). 

X and Y units are in millimetres; colours are as in Figure 8. 



 

ground modeling approaches (a significant 20-30 mm im-
provement). To visualize these errors, we also computed the 
95% confidence ellipsoids (Figure 9) for each tracker (note 
that the offset correction corresponds to recentering the 
ellipsoids). These errors are consistent with prior results 
from Wilson [24] and OmniTouch [6], suggesting that our 
offset-corrected comparison implementations are reasona-
bly close to the original implementations. 

Multitouch Segmentation 
With the multitouch segmentation task, we aimed to meas-
ure the false positive and false negative rates for touch 
detection with multiple fingers present in a small region. 
Under these conditions, touch trackers might merge adja-
cent fingers or detect spurious touches between fingers. The 
differences between the back and front sides were not sig-
nificant in this task, so the results have been combined. In 
total, 1440 trials were collected.  

Detecting a single extended finger is the easiest task. In 
single finger trials, DIRECT detected the correct number 
95.8% of the time. Single-frame background, maximum 
frame background and statistical model background 
achieved 52.8%, 66.3% and 35.1% respectively. Slice-
finding was 75.0% accurate. 

Detecting several fingers in close proximity is much more 
challenging when sensing at 1.6 meters. With all trials 
combined, DIRECT detected the correct number of fingers 
in 75.5% of trials, more fingers than were present in 2.4% 
of trials and fewer fingers than were present in 22.1% of 
trials. The three background modeling approaches – single-
frame, maximum frame and statistical model – detected the 
correct number of fingers 22.2%, 29.2% and 17.3% of the 
time. Very few trials reported more fingers than were pre-
sent: 9, 7 and 4 trials respectively (<0.1% of all trials). 
Instead, these methods tended to miss fingers (77.1%, 
70.2%, and 82.4% of trials respectively). Finally, the slice-
finding approach detected more fingers in just 9 trials 
(<0.1% of trials), fewer fingers in 75.4% of trials, and the 
true number of fingers in 24.0% of trials. 

We tuned the comparison technique implementations to 
minimize spurious touches while nothing was touching the 
table. However, our multitouch segmentation results sug-
gest that optimizing for this criterion could have rejected 
too many legitimate touches, reducing touch detection rates. 
On the other hand, increasing touch sensitivity significantly 
increases noise and errant touches. For example, decreasing 
the “low boundary” depth threshold in the maximum-
distance background model tracker by a single millimeter 
results in hundreds of errant touches detected on the surface 
every second, which is clearly not acceptable.  

Shape Tracing 
Tracking moving fingers is extra challenging as the expo-
sure time of the depth camera produces motion blur across 
the moving parts of the frame, reducing accuracy. Further, 
as already mentioned above, our comparative methods are 
prone to missing fingers. In the case of finger movement, 

this will manifest as loss of finger tracking for several 
frames. During this period, spurious input would often 
cause the traced path to zigzag. For this reason, it was simp-
ly not possible to complete a realistic and useful analysis 
with our study data.  

However, we can use results reported in OmniTouch [6] as 
one point of comparison. Specifically, OmniTouch reports a 
mean error of 6.3 mm (SD=3.9 mm) at a sensing distance of 
40 cm on a flat notepad. For comparison, DIRECT achieves 
a mean error of 2.9 mm (mean SD=2.7 mm) at a sensing 
distance of 160 cm (on a flat table).  

CONCLUSION 
We have presented DIRECT, a touch tracking system 
which strategically merges depth and infrared data from an 
off-the-shelf infrared depth camera to enable highly accu-
rate touch tracking, even at significant distances from the 
sensor. Overall, DIRECT demonstrates greatly improved 
touch tracking accuracy (mean error of 4.9 mm) and detec-
tion rate (>99%) – roughly twice as good as the next best 
method in the literature, and nearly ten times better than 
classic approaches.  

There are also immediate ways to further improve our sys-
tem. For example, in our present implementation, DIRECT 
outputs integer coordinates on the depth map, which quan-
tizes the X/Y position to 4.4 mm (mean error due to quanti-
zation: 3.1 mm). Averaging pixels at the tip could provide a 
sub-pixel estimate, further boosting accuracy. Additionally, 
we could apply temporal smoothing to improve touch posi-
tion stability at the expense of latency. 

To conclude, we hope that DIRECT’s significantly im-
proved finger tracking accuracy can open new opportunities 
in ad hoc touch interfaces and better allow this emerging 
computing modality to be explored. We also believe this 
advance can help move depth-driven systems from proof-
of-concept to more practical and widespread use. 
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