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Systems for providing mixed physical-virtual interaction on desktop surfaces have been proposed for decades, though no 
such systems have achieved widespread use. One major factor contributing to this lack of acceptance may be that these 
systems are not designed for the variety and complexity of actual work surfaces, which are often in flux and cluttered with 
physical objects. In this paper, we use an elicitation study and interviews to synthesize a list of ten interactive behaviors 
that desk-bound, digital interfaces should implement to support responsive cohabitation with physical objects. As a proof 
of concept, we implemented these interactive behaviors in a working augmented desk system, demonstrating their immi-
nent feasibility. 

CCS Concepts: • Human-centered computing → Graphical user interfaces; • Computing methodologies → 
Mixed / augmented reality; Graphics input devices 
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1 INTRODUCTION 

Researchers and practitioners have long articulated the vision and promise of digitally augmented desks. 
Seminal work emerged in the early 1990’s, most notably Xerox PARC’s DigitalDesk [34, 48, 49]. Since then, 
dozens of systems have been proposed and built, demonstrating superposition of content onto physical arti-
facts [40, 48], the use of physical objects for tangible interaction [14, 45], in situ remote collaboration [22, 46, 
48], and more generally, interactive applications on desk surfaces [23, 25, 36, 53]. 
However, a notable commonality of these futuristic systems is the minimalist nature of the surfaces used – 
often lacking keyboards, mice, mugs, papers, knickknacks, and other contemporary and commonplace items 
(Figure 1). Of course today’s desk surfaces play host to a wide variety of items of varying shape and size. 
Moreover, these objects rarely conform to a grid or even common orientation. Desks are also constantly in 
flux, with items moving, stacking, appearing and disappearing. Example events include sliding a laptop out 
the way to make room for new work, or resting a fresh cup of coffee on the work surface. 
If digital desks do not account for these basic physical actions, applications can become brittle (e.g., does a 
mug placed on top of a virtual keyboard inject spurious touch input?) or inaccessible (e.g., if a book is placed 
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over an interface, how does one access it?). Further, because physical objects cannot move or resize on their 
own, the burden of responsiveness falls to the digital elements. Thus, digital applications must employ a 
variety of strategies to successfully cohabit a work surface with physical artifacts.  
To help close this gap, we conducted an elicitation study with ten participants at their personal desks to un-
derstand how applications could respond to different events. From this, we derived a list of ten fundamental 
interactive behaviors that responsive desk-bound virtual applications should exhibit. To demonstrate these 
behaviors can be achieved practically and in real time, we built a proof-of-concept system with the necessary 
technical advances to support each behavior. This system had to move beyond prior work in several key ways; 
for example, our system requires no calibration to the world, allowing the desk scene to be in flux (i.e., there is 
no notion of a “background”). Further, our touch tracking approach distinguishes human “objects” (arms, 
hands, fingers) from other objects. This ability is critical for responsive interfaces, which must respond to user 
movement and input differently from changes to the physical environment (e.g., interfaces should evade from 
your coffee mug, but not from your hands).  

 

Figure 1. Clockwise from top left: Digital Desk [48], Hardy [18], LuminAR [30], IllumiShare [22], AR Lamp [25],  
Everywhere Displays [36], Enhanced Desk [27], Bonfire [23], I/O Bulb [46]. Note the general lack of items in the  

interactive area. The few physical objects that do have digital interactivity are either tagged (e.g., fiducial markers),  
are special tangibles, or require a custom interactive table (e.g., FTIR). 

2 RELATED WORK 
Behaviors surrounding physical desks and workplaces have long intrigued researchers from fields including 
management sciences, anthropology and ergonomics (see e.g., [31, 42, 47]). More recently, HCI researchers 
have studied desk practice to better understand how to integrate digital workflows (e.g., [7, 17, 18, 31, 43]). 
While this prior work provides great insight into the culture of desk practice, it tends to ignore the minutiae 
of small-scale, desk-level interactions. Instead, we more deeply review prior work on augmented desktop 
interactions relevant to our present research, as well as work on the technical underpinnings of such aug-
mented desk systems. 
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3 AUGMENTED DESKTOPS 

The concept of an augmented desktop – either projected [48] or through AR/VR technologies [33] – goes back 
to at least the 1970’s with Knowlton’s optically superimposed button array [26]. However, the full vision of 
the augmented desk did not appear until the early 1990s, with seminal systems such as Xerox PARC’s digital 
desk [34, 48] and Ishii’s TeamWorkStation [20]. The concept was rapidly expanded upon in the 90’s with key 
systems including interactiveDESK [3], EnhancedDesk [27], I/O Bulb [46], Illuminated Light [45], Office of the 
Future [38] and the Everywhere Displays Projector [36]. 
Recent advances in electronics and networking have created opportunities to refine the augmented desk 
experience. Magic Desk [5] prototyped an augmented desk interface using a physical touchscreen as the desk 
surface. IllumiShare [22] offers a sophisticated, end-to-end desktop remote collaboration experience, while 
Bonfire [23] takes the concept mobile with cameras and projectors operating behind the lid of a laptop. Mi-
rageTable [4] merges physical and virtual objects on a tabletop, with a physics-based interaction approach. 
Newer projects, such as LuminAR [30] and AR Lamp [25], put forward light-bulb-like implementations in 
attempts to achieve the technical vision proposed in the I/O Bulb [46] twenty years earlier. 

 

Figure 2. Example real-world desks of our participants.  

Systems that superimpose rectified information onto physical artifacts (e.g., [34, 45, 48]) might be described as 
using “following” or “snapping”. However, there is an important difference between projected content that 
merely tracks with physical objects, and an interface that attaches to an object’s 3D geometry and follows its 
movements. The closest related work is the “binding” behavior described in Live Paper [40]. 
Lastly, other efforts, such as WorldKit [53], aim to bootstrap on-world application development by offering an 
SDK to abstract away many of the complexities of operating on everyday surfaces (e.g., touch tracking, recti-
fied projected output). There have also been recent design-oriented efforts to study e.g., augmented desk usage 
in the wild [18], as well as superior desk form factors [52]. 
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3.1 Touch Sensing on the World 
Numerous approaches have been proposed to enable touch- and gesture-sensitive work surfaces. One option 
is to have a specially instrumented surface that uses e.g., acoustic [48], capacitive [5, 39], optical [44] or other 
sensing approaches. To enable touch interaction on conventional desks without instrumentation, systems 
typically use computer vision, generally requiring a camera operating above the surface. Many schemes have 
been proposed, including finger template matching [27], markers [32], skin-color segmentation [23, 25], resid-
ual thermal imprints [28] or contour-based classification and tracking [10].  
Most similar to our own system are those employing depth cameras for touch sensing. Many such systems 
rely on a background model or background subtraction for touch sensing [21, 50, 51, 53], precluding their use 
in dynamic environments. Notably, however, OmniTouch [19] used a template-matching scheme for finding 
fingers and could thus operate on dynamic scenes. 

3.2 Optimization-Based Layout 

Our system handles layouts for irregular desk topographies using an optimization-driven approach. Optimiza-
tion has long been used for spatial problems such as graph visualization [13], VLSI layout [11] and more 
recently, for problems in perceptually optimized display generation [2, 29]. More relevant are optimization 
based techniques employed for automatic generation of user interface layouts (see e.g., [6, 15, 16, 41]). As far 
as we are aware, our work is the first to use optimization-based layout for on-world interactive purposes. 

3.3 Projection Mapping 
There are several approaches for projecting onto the complex and often irregular geometry of the world 
around us. For example, “The Office of the Future” [38] proposed using 3D head tracking and office-wide 
depth sensing to project imagery onto irregular surfaces, such that it would appear correct from the user’s 
perspective. More recently, WorldKit [53] enabled the user to “paint” various widgets onto different flat sur-
faces in the environment. iLamps [37] used structured light to sense the 3D geometry of a projection surface 
(e.g. multiple walls or curved surfaces) and uses these data to minimize visual distortion of projected output. 
Finally, depth cameras have made it easier to sense the geometry of environments and perform projection 
mapping, enabling real-time rectification onto moving targets [19]. 

4 ELICITATION STUDY 

To help identify useful interactive strategies, we recruited ten participants (three female, mean age 31) for a 
one-hour study. This study was conducted at participants’ own desks (see Figure 2 for some examples) for 
ecological validity. Common desk-bound items included computers, monitors and related accessories; desk 
phones; stacks and files of papers; carried items such as wallets, phones and keys; personal items such as 
memorabilia, photographs and gifts; coffee mugs; and books.  
We started with a general interview. Participants repeatedly articulated that frequently-accessed items gravi-
tated to the front and center, while other items moved to the periphery. In general, however, the entire desk 
surface was in flux, with perhaps only a computer monitor and a few peripheral items (e.g., picture frames) 
being stable on the time scale of months. Although our sample size was small, it reinforced our assumption 
(and findings from prior studies) that desks tended to be cluttered and dynamic.  
Next – and the primary purpose of the study – was to elicit interactive behaviors that digital applications 
should support. We structured this elicitation study [35] around a think-aloud exercise with paper prototypes. 
Specifically, participants were given paper prototypes of four common applications – a calendar, map, music 
player, and number keypad – and asked to imagine them as though they were fully interactive (Figure 3).  
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Participants then placed the (paper) applications on their work surface as they saw fit, thinking aloud about 
their reasoning. We also prompted them with a series of hypothetical situations, such as “what should happen 
to this application if you put your phone down here?”, “… push the cup to the left?”, “… pack your laptop in 
your bag?” Participants could move, animate, fold or otherwise manipulate the paper interfaces, or explain 
verbally what should occur in response. The facilitator recorded comments for later analysis and affinity 
diagramming.  

 

Figure 3. Sample arrangement of the paper prototypes in the elicitation study. a: The map is placed to the side, for  
reference but not frequent use. b: The calendar is placed nearby so it can be glanced at. c: The music player is  

snapped to the keyboard for quick access. d: The number keypad extends the keyboard. 

5 DISTILLING INTERACTIVE BEHAVIORS 
Following the study, we distilled our written notes and participant quotes into three functional categories: 

5.1 Application Lifecycle 
Summoning: Participants articulated a variety of potential strategies for summoning applications, including 
special gestures (e.g., “double tapping the desk”), persistent buttons (“start button”, “dashboard”, “dock”), 
spoken commands, and using a conventional device (“dragging an interface off computer desktop or mobile 
phone”, “keyboard shortcut”). 

Closing: Several methods for dismissing interfaces were proposed by participants: occluding an interface with 
an object (to make it “go away”), shrinking an interface substantially, moving an interface to a dedicated 
“trash can” area, or invoking a special gesture (e.g., “scrunching up”), throwing an object (“flinging” it), or 
whimsically, miming a fireball-throwing gesture at it (“hadouken”). 

5.2 Layout Control 
Repositioning: Participants uniformly expected to be able to reposition interfaces by holding their fingers or 
hand on the interface and dragging the interface around. 
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Reorienting: Objects on desks rarely conformed to rectilinear grids; rather, objects were typically oriented in a 
radial pattern centered on the user. We observed that users generally rotated interfaces to face themselves, 
and two users further wanted the ability to rotate interfaces to face visitors (e.g., to show a map to someone). 

Resizing: Most participants expected to be able to “pinch” to resize interfaces, though four participants noted 
that the pinch would be ambiguous (pinching content vs. resizing window). These participants suggesting 
resizing by using the corners, akin to desktop GUI applications. Finally, some participants noted that they 
would prefer unused applications to be shrunk and placed out of the way, to be retrieved and expanded on 
demand. 

5.3 Cohabitation Behaviors 
Snapping: Participants typically placed the number keypad or music player controls near the computer key-
board or mouse. Five participants also described wanting to “snap” or “link” these interfaces to the keyboard, 
letting it behave as though it was an extension of the keyboard. 

Following: Four participants noted that they expected snapped interfaces to automatically “follow” the move-
ments of their associated physical object, unless the interface was manually repositioned. 

Detaching: Participants noted that interfaces should “unsnap” if they were covered up or manually “pulled 
apart” or “torn off” from the object they were snapped to. 

Evading: When asked to describe what interfaces should do when occluded by an object, participants were 
divided. Six participants expected interfaces to “popup elsewhere” or “run away” when occluded, two suggest-
ed that interfaces could shrink down to fit the remaining space, and four participants expecting the interface 
to “nudge away” or “adjust” in response to partial occlusions. Conversely, four participants noted that they 
would simply expect the interfaces to misbehave or ignore input if occluded. 

Collapsing: If the available desk space shrunk until interfaces could not find sufficient surface area to exist, 
participants expected them to shrink substantially or disappear entirely, as opposed to “climbing” on top of 
objects. 

These ten verbs form the basis of the interaction techniques we believe are necessary to support responsive 
interfaces in mixed physical-virtual desk contexts. Notably, while some of our verbs are taken from desktop 
windowing operations (resizing, repositioning, closing), several are designed specifically for cohabitation with 
physical objects (snapping, following, evading). Next, we describe our proof-of-concept system that imple-
ments all ten behaviors in real time, with no fiducial tags (or equivalent), on conventional desks, using com-
modity hardware.  

6 INTERACTIVE BEHAVIOR IMPLEMENTATIONS 

We built a desktop projection and sensing system that offers example embodiments of our ten interactive 
behaviors. The specific technical implementations of these features are described in detail in the next section. 
Importantly, the interactive behaviors we describe are not specific to the particular manipulation scheme 
employed. For example, one alternative input method could be to treat digital items more like physical objects, 
and use physical metaphors for interface manipulation, such as pushing, throwing and stacking (as seen in 
e.g., BumpTop [1] and ShapeTouch [9]). 
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6.1 Conventional Interactions 
To support conventional multitouch interaction, we reserve one- and two-finger interaction for interacting 
with the application content itself. Users therefore use familiar touch gestures within an application content, 
such as one-finger swiping and panning, and two-finger pinching and rotating.  

6.2 Summoning 
A central feature of all interactive systems is the general ability to trigger actions, a subset of which is sum-
moning applications. Conventional GUIs typically feature static application bars, docks, menus, launchers, or 
other schemes, which serve as a reliable and readily accessible access point. However, a physical desktop may 
not have sufficient space, let alone a universally available summoning point. Thus, we had to consider several 
mechanisms for instantiating applications. 
A number of mechanisms were suggested during our study: special-purpose buttons or taskbars (e.g., the 
Windows “Start” button); special-purpose hand gestures (e.g., double-tapping the surface); or instantiation via 
transplantation from the computer itself. Ultimately, we decided to implement a special-purpose hand gesture 
for summoning, as it enabled launching an interface in-place without requiring a computer or dedicated desk 
space. 
Executing the triggering gesture (tapping twice with four fingers on an unoccupied space on the desk) causes 
a radial menu to appear at the approximate centroid of the fingers (Figure 4a-c). The user then moves the 
fingers towards the desired application and lifts their fingers to confirm the selection (Figure 4d), which is 
then launched in place (Figure 4e). In a complete implementation, one of the menu options would permit voice 
or text input to search for less common applications not listed in the radial menu. 

 

Figure 4. Summoning an application. a-c: The user taps twice with four fingers to bring up a launcher. d: The user 
moves to select the desired application. e: After lifting the fingers, the application is created. 

6.3 Resizing 
During our study, every participant suggested using a pinch gesture to resize the interface. However, some 
noted that this would be ambiguous with respect to the content. Further, a pinch gesture does not naturally 
permit the aspect ratio to be adjusted. We therefore borrow a familiar mechanism for manual resizing – a drag-
gable 1.5 cm grey box in the lower-right corner of running applications (Figure 5a). Because applications can 
(and must) exist at a variety of sizes on desktops, applications ideally implement responsive layout schemes [54] 
(Figure 5a,b). If applications are resized below a reasonable limit (e.g., less than 4 cm in either direction), appli-
cations are “iconified” by our window manager, displaying only an icon of the application and the resize box 
(Figure 5c). This permits applications to be stored on the desk without taking up substantial space. 
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6.4 Deleting 
We considered several possible deletion schemes, some suggested by our study. These included special-
purpose gestures (e.g., “scrunching up” the interface or “flicking” the interface away), special drag targets (e.g., 
a “trash can”), or explicit close buttons (like those found on computer desktop windows). Ultimately, we chose 
to simply extend resizing to provide deletion capabilities: applications can be deleted simply by resizing them 
below 1.5 cm in either axis (Figure 5d). This approach is straightforward and requires no additional buttons or 
gestures. 

 

Figure 5. Resizing and closing. a: The user grabs the resize handle in the corner. b: Some interfaces can responsively 
alter their layout depending on their size; here, the calendar switches from week view to day view. c: Making the  

interface very small causes it to iconify. d: Shrinking the interface further will close it. 

6.5 Repositioning and Reorienting 
In order to reposition applications manually, we implemented a “drag” strategy. Users can press three fingers 
to the application and drag or rotate as desired (Figure 6a,b). For iconified applications, which are small, a 
single finger is used for dragging (as the application content is hidden, there is no interaction ambiguity in 
this case). 

 

Figure 6. Repositioning, reorienting and snapping. a-b: Three fingers on the interface activates dragging. c: Dragging 
the interface near an edge highlights the edge in yellow. d: Upon releasing the interface, it snaps to the edge, which 

is highlighted in green. 

6.6 Snapping 

Users can snap applications to topological discontinuities (i.e., “edges”) of physical objects on the desk, such as 
the sides of laptops, books, keyboard, stacks of paper, edges of work surfaces and so on. To snap an interface 
to an edge, users drag the interface near to a target (Figure 6b). The nearest object edge to the interface (up to 
50 mm away) is highlighted in yellow (Figure 6c). When an object edge is highlighted, releasing the drag will 
cause the interface to snap to the highlighted edge, repositioning and reorienting the interface as necessary. 
After successfully snapping, the interface edge is highlighted in green (Figure 6d). 
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6.7 Following 
As noted during our study, users expect snapped interfaces to follow the objects they are snapped to. In our 
system, this “following” behavior is implemented by updating the object edges ten times per second (alongside 
the desk topography), and repositioning snapped interfaces to the new edge nearest to the previous edge (in 
both position and rotation angle). This causes interfaces to simply follow the objects naturally (Figure 7a-c). 
To avoid jitter due to noise in the edge measurements, interfaces only follow if the edge moves by more than 
4 mm. 

6.8 Detaching 

Users may also want to disable snapping or following behaviors, in which case they can detach an interface 
from an edge. This can be achieved by either dragging the interface off of the object (Figure 7d), or by moving 
the object rapidly away from the interface (i.e., “tearing” it off). 

 

Figure 7. Following and detaching. a-c: Once a virtual interface is snapped to an object, it should follow if the object is 
moved. d: The snapped interface can be detached by dragging it off. 

6.9 Evading 
Interfaces will attempt to evade objects that suddenly occlude them (Figure 8b-c). This could happen if, e.g., 
users rearrange their desk, or shuffle items around. When this occurs, the next topography update will detect 
a sudden increase in the interface’s “roughness”, and will include the interface in the subsequent optimization 
pass (discussed in the next section). This relocates the interface to a nearby open space on the desk (any rela-
tively-flat area with low roughness), while avoiding other interfaces. Multiple interfaces may participate in 
optimization simultaneously. 

 

Figure 8. Evading and collapsing. a: An interface is positioned somewhere. b: The interface is occluded by an object. c: 
When the user moves his hands away, the interface evades the occlusion, and also collapses to fit available space. 
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6.10 Collapsing 
Our optimization-based layout algorithm will also automatically shrink an interface if the available space is 
insufficient to host a displaced interface. This permits an interface to “squeeze” into a space where it can be 
displayed (Figure 8c). If the available space is very limited, the interface may simply iconify; the user can then 
choose to clear off space and re-expand the interface if desired. 

7 TECHNICAL IMPLEMENTATION 

Achieving our ten interactive behaviors required combining features described in many disparate research 
efforts into a single novel system, as no prior system has the necessary technical capabilities. More specifical-
ly, our system provides rectified projection onto irregular surfaces. To support our cohabitation behaviors, it 
needed to perform object tracking and edge finding in real-time. We also employ an optimization-based layout 
engine to automatically relocate evading interfaces. For finger touch tracking, we extend the approach de-
scribed in OmniTouch [19], which allows fingers to be disambiguated from other objects. 

7.1 Hardware 

Our hardware prototype consists of a paired depth camera (Asus Xtion) and pocket projector (700-lumen 
Optoma ML750), a configuration similar to that found in [19, 53] (Figure 9, right). The hardware was enclosed 
in a ceiling-hung lampshade fixture (Figure 9, left) suspended 90 cm above a desk surface. At this distance, the 
projected image is 62x39 cm in size. The camera and projector are rigidly affixed together and calibrated to 
each other “at the factory” using a seven-point calibration routine [53]. The hardware is designed to be easily 
portable, requiring no calibration to the desk surface. 
The depth camera produces 320x240 pixel depth images at 30 frames per second. Natural variation due to 
noise is 4-7 mm at a distance of 90 cm [24]. Our software was developed using the OpenFrameworks C++ 
library, and runs on a 2011 Macbook Pro. The complete implementation requires less than 15% of the CPU in 
full operation. It runs touch tracking at camera frame rate (30 fps), geometry updates at 10 fps, and interface 
rendering at projector frame rate (60 fps). Please also see the Video Figure. 
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Figure 9. Our proof-of-concept projected augmented desk system fitted into a lampshade. 

7.2 Disambiguating Object and Human Movement 

In order to enable interaction on the ever-changing desk surface, our system needs to readily and accurately 
distinguish fingers and hands from other objects. For example, to implement the evade behavior, we need to 
have interfaces move away from objects that are placed on top, but not move away from hands or fingers that 
appear over the interface in attempts to interact with it. Additionally, interfaces must be able to respond to 
hand and finger input without being affected by other objects that may be moving in the scene.  
We therefore detect human arms in addition to fingers during our touch tracking procedure, and use the arm 
and finger data to label fingers, hands and arms. These human “objects” are then excluded from most topo-
graphical considerations. Since the field-of-view of the depth sensor is approximately twice as large as the 
projection area in our system, we can guarantee that fingers appearing within the projection area will always 
be accompanied by visible arms in the larger depth image. 

7.3 Touch Tracking 
We did not want to augment our desks with additional sensors (since the system was intended to operate over 
any unmodified desk surface), and therefore opted to use a depth camera to track touches. Further, while 
background subtraction and in-air touch tracking enable reliable hand tracking (by identifying and removing 
the background), we determined that such an approach would be infeasible in a desk environment where 
objects are liable to move. 
Instead, we decided to use the “sausage-finding” finger tracking algorithm proposed in OmniTouch [19], 
which we extend in several significant ways: 

• We extract both horizontal and vertical slices, enabling detection of fingers oriented in any direction. 
• Our algorithm works on messy surfaces with a variety of objects and upon multiple surfaces. 
• We reject finger-like objects by also detecting arms and requiring co-occurrence. 
• We operate at a significantly increased range with similar hardware, necessitating stronger error toler-

ance. 
• We can detect fingers at a wide range of vertical angles, from completely flat (Figure 10) to 70º vertical. 
• The algorithm is optimized, requiring less than 10 ms to detect any number of touches on the surface. 
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Additionally, our algorithm requires no calibration, no background subtraction, and makes no decisions based 
on (potentially lighting-dependent) color information.  

 

Figure 10. Our touch tracking algorithm can find fingertips even when the hand is flat against the surface. 

The algorithm detects fingers and arms, which are characterized by cylindrical geometry within a certain 
narrow range of widths. To start, it computes the depth derivatives in both the horizontal and vertical direc-
tions using a sliding 8x8 window (Figure 11a), then locates cylindrical slices in both the vertical and horizontal 
axes (Figure 11b, red and blue lines) which are characterized by a pattern of a steep negative depth gradient 
(rising towards the camera), followed by relatively flat (near-zero) depth gradients, and then closed by a steep 
positive depth gradient. 
Adjacent slices are connected into cylinders (Figure 11b, white), skipping short gaps to improve robustness. 
Vertical and horizontal slices can coexist in the same cylinder, to provide detection of diagonal fingers. Only 
cylinders in the typical length range for an arm or finger are kept. Finger cylinders are then paired with arm 
cylinders based on proximity. The detection of arm cylinders both serves to reject non-fingers and to orient 
the finger cylinders correctly (with the fingertip pointing away from the arm).  
For touch detection, the algorithm starts a depth-based flood fill (Figure 11b, green) at a point 90% of the way 
from the base of the finger to the fingertip (roughly the position of the distal knuckle joint). The flood fill only 
fills into points having depth near to the seed point, and only fills up to a set maximum number of pixels (i.e., 
by flooding out onto the surface). In the latter case, the finger is determined to have touched a surface. Finally, 
the touch tip positions (Figure 11c) are smoothed with an exponentially-weighted moving average (EWMA) 
filter, reducing jitter substantially. 
This touch algorithm also provides several useful pieces of information about each finger: the height of the 
finger above the surface, the 3D position and 3D orientation of the finger (since the 3D positions of the finger 
cylinder ends are both known), whether the finger is bent or straight, and the approximate length of the 
finger. These features could be used to expand the interactive capabilities of virtual desk applications. 
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Figure 11. Touch tracking steps. a: Depth gradients (red=dx, blue=dy). b: Unfiltered cylinder slices (red, blue), slices 
connected into cylinders (white lines) and touch-detection flood-fill (green). c: Detected touches overlaid on depth 

image. White circles represent the base of the finger. 

7.4 Handling Irregular Surfaces 

The desk topography is sensed by converting each depth pixel in the projection area into a height value, 
which is used to construct a mesh. The topography mesh is then re-rendered from an orthographic top-down 
view, and the depth component of this rendering is extracted into a height map. This height map is used to 
identify flat areas suitable for placing interfaces. 
The mesh is also used for projection mapping. The desktop imagery is texture-mapped onto the mesh such 
that the resulting projected output appears correct from overhead, even if desktop-bound objects are tall or 
irregularly-shaped.  This also ensures the projections maintain a consistent scale (so that e.g., 1 mm on the 
virtual desktop is always 1 mm on the surface regardless of surface height). 
The system attempts to update the desk topography ten times per second, but will skip the update if fingers 
are detected over top of, or on an interface to avoid occlusion and interference from the user’s hands. After 
completing a topography update, the system will search for edges in the new topography, and then initiate an 
interface optimization pass to support evading and following behaviors. 

7.5 Edge Finding 
In order to support our snapping and following behaviors, our system required the ability to detect edges of 
physical objects. The process starts by filtering the desk height map with a Canny edge filter [8] to extract 
depth discontinuities. The parameters were tuned to extract discontinuities of at least 7 mm without excessive 
noise (the smallest possible difference given the noise performance of our depth sensor). The binary edge 
image is then fed to OpenCV’s contour-finding routine, which connects adjacent edge pixels into contiguous 
contours.  
Contours are then filtered to remove artifacts (e.g., doubled-up paths) and short noise-induced contours. We 
then extract segments from the contours by walking over the pixels in each contour and outputting a segment 
whenever the contour abruptly changes direction (by more than 45º in an 8-pixel window). Short segments 
(less than 20 mm long) are deleted, and the remaining segments are converted to straight lines by using linear 
interpolation. 
When a user drags an interface near a discovered edge, the edge highlights (Figure 6c); the closest edge to the 
interface center is selected in case of ambiguity. If the user releases the drag while an edge is highlighted, the 
interface will snap to that edge (Figure 6d). Snapping locks one edge of the interface to the target object edge; 
the chosen interface edge is the closest edge that makes a 45º-or-less angle with the object edge. In subsequent 
update frames, the system selects the nearest object edge to the previous snapped edge, and moves the inter-
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face accordingly. If the nearest object edge is more than 40 mm away, the system assumes that a detach event 
has occurred and the snap is released. 

7.6 Optimization-Based Layout 

In order to support evading and collapsing behaviors, the system must be able to automatically identify open 
spaces on the surface, and to decide whether the available space is sufficient to host an application. However, 
the irregular and complex topology of desks yields innumerable corner cases that make building a rule-based 
or heuristically driven layout approach unwieldy and brittle. Thus, we use an optimization-based layout 
engine to support evading and collapsing interfaces.  
This approach defines a certain “cost” to every interface configuration, depending on the desk topography and 
interface positions. It then aims to minimize the total cost of the configuration, subject to a number of “penal-
ties” which guide the process away from undesirable behaviours (e.g., to avoid large jumps in interface posi-
tion). Furthermore, the optimization-based layout engine can be used, for example, to automatically position 
new interface elements (if they are summoned e.g., using a voice command alone) or to support recalling a set 
of interfaces onto a changed desk layout. 
The layout engine uses the topographical height map to determine the surface roughness as follows. The 
roughness at each desk point is calculated as the standard deviation of the height map in a 41 × 41 mm win-
dow centered on the desk point. This is efficiently computed by using sliding windows over summed-area 
tables [12]. The “roughness” of a particular interface area is the average roughness across each point in the 
region; this is efficiently calculated by using a polygon scanline approach coupled with a summed-area table 
of the roughness map. 
Every time the topography is updated (~10 FPS), the roughness map is also updated. Interface positions are 
adjusted to follow any snapped edge boundaries (to support following behaviors), and the optimization algo-
rithm is executed. The optimizer generates and evaluates a number of candidate interface configurations, 
starting with the previous configuration. Interfaces which were recently positioned by hand, or whose rough-
ness has not significantly increased since the most recent optimization run are excluded from optimization. 
The cost of a particular configuration is computed from the total sum of the interface area roughness values 
and an assortment of penalties (cost increases) to discourage particular behaviors. A penalty is imposed for 
moving an interface at all, which biases the algorithm towards keeping applications still. Another penalty is 
applied based on the distance moved and any applicable size change, which biases the algorithm towards 
small movements (preserving spatial locality) and minimal adjustments to the window size. Finally, a large 
penalty is imposed for any overlap between interfaces, to prevent the algorithm from stacking interfaces on 
top of one another in ideal areas. 
The optimization itself is performed using a simulated annealing algorithm, which maintains a “temperature” 
parameter that decreases with each iteration of the algorithm. In each iteration, each interface in the current 
best configuration is “mutated” to generate a list of new candidate placements; these mutations can consist of 
moving, rotating or resizing objects. The expected magnitude of each mutation is controlled by the “tempera-
ture” parameter, with higher temperatures resulting in more extreme mutations (e.g., longer distance move-
ments). Candidates are combined into new configurations and tested for acceptance according to the current 
timestep’s “temperature” parameter (which controls the simulated annealing algorithm’s willingness to accept 
new “best” configurations). The configurations are generated exhaustively starting with the candidates having 
the lowest roughness values. If this process yields too many combinations, the algorithm switches to generat-
ing configurations randomly to avoid combinatorial explosion. 
Our optimization algorithm terminates after reaching a predefined number of iterations, or if it runs for more 
than 60 ms. This bounds the optimization algorithm and prevents it from running endlessly. The best configu-
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ration found so far is then returned (which may be the same as the initial configuration, as that is heavily 
weighted, if no alternative was clearly superior).  

8 CONCLUSIONS 

We have presented a set of ten interaction behaviors for augmented desk interfaces that facilitate digital 
interfaces co-existing with and responding to physical objects. These behaviors were derived from an elicita-
tion study using paper prototypes. We then described our proof-of-concept projector-camera system, designed 
with a unique set of technical features necessary to implement our behaviors. In general, the interaction 
behaviors presented in this paper serve as a basis for a more complete, modern digital desk system, in which 
the work surface and its contents are not replaced with digital equivalents, but augmented to add new capabil-
ities. While similar ideas have been explored in prior work, we draw them together in a holistic and grounded 
manner, and additionally demonstrate their technical feasibility. 
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