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ABSTRACT 
Augmented reality requires precise and instant overlay of 
digital information onto everyday objects. We present our 
work on LightAnchors, a new method for displaying spa-
tially-anchored data. We take advantage of pervasive point 
lights – such as LEDs and light bulbs – for both in-view an-
choring and data transmission. These lights are blinked at 
high speed to encode data. We built a proof-of-concept ap-
plication that runs on iOS without any hardware or software 
modifications. We also ran a study to characterize the perfor-
mance of LightAnchors and built eleven example demos to 
highlight the potential of our approach. 

Author Keywords 
Augmented Reality; Smartphones, Tags, Markers, Visible 
Light Communication; Mobile Interaction. 

CCS Concepts 
Human-centered computing → Human computer interaction 
(HCI) → Interaction paradigms → Mixed / augmented reality 

INTRODUCTION 
Augmented reality (AR) allows for the overlay of digital in-
formation and interactive content onto scenes and objects. In 
order to provide tight registration of data onto objects in a 
scene, it is most common for markers to be employed. Innu-
merable visual tagging strategies have been investigated in 
both academia and industry (e.g., retroreflective stickers, 
barcodes, ARToolKit markers [15], ARTags [7], AprilTag 
[31], QR Codes [14], and ArUco markers [29]). 

In this paper, we present LightAnchors, a new method to dis-
play spatially-anchored data in augmented reality applica-
tions. Unlike most prior tracking methods, which instrument 
objects with markers (often large and/or obtrusive), we take 
advantage of point lights already found in many objects and 
environments. For example, most electrical appliances now 
feature small (LED) status lights, and light bulbs are com-
mon in indoor and outdoor settings. In addition to leveraging 
these point lights for in-view anchoring (i.e., attaching 

information and interfaces to specific objects), we also co-
opt these lights for data transmission, blinking them rapidly 
to encode binary data. 

Another difference from conventional markers is that 
LightAnchors can transmit dynamic payloads, without the 
need for WiFi, Bluetooth or indeed, any connectivity. De-
vices need only an inexpensive microcontroller (e.g., [22], 
which costs less than $0.50 USD) with the ability to blink a 
LED. This could allow “dumb” devices to become smarter 
through AR with minimal extra cost (much less than e.g., 
adding a screen to a device). For example, we created a glue 
gun that transmits its live temperature (Figure 1). For devices 
that already contain a microprocessor, LightAnchors opens a 
new information outlet in AR, for example, the LED found 
in many security cameras could be used to share the device’s 
privacy policy (Figure 1). 

As smartphones are the most pervasive AR platform at pre-
sent, we created a proof-of-concept LightAnchors imple-
mentation for iOS. This native application requires no spe-
cial hardware or operating system modifications, and simply 
takes advantage of high-speed cameras that have shipped on 
recent smartphone models (up to 240 frames per second on 
the iPhone 7 and later models). In addition to describing our 
algorithm, we also report the findings of a transmission per-
formance study, which tested accuracy at different distances, 
with two light sizes, and while held still and in motion. We 
conclude by describing ten example applications we built to 
illustrate the potential of LightAnchors. 
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Figure 1. With LightAnchors, a security camera’s LED can 

be used to share its privacy policy, while a hot glue gun trans-
mits its live temperature (close-up of screen in B). 

 



RELATED WORK 
LightAnchors overlaps with several disparate literatures, in-
cluding marker-based tracking approaches, marker-less 
computer vision techniques, and visible light communica-
tion. We now briefly review these research areas. 

Fiducial Markers 
There are a wide variety of successful fiducial marking 
schemes. For example, ARTags [15]  use black-and-white 
2D patterns that allow conventional cameras to read a data 
payload and also estimate 3D position/orientation of the tag. 
Other popular schemes include QR Codes [14], April Tags 
[31] and ArUco markers [29]. These printed tags are highly 
visible, and thus often obtrusive to the visual design of ob-
jects. In consumer devices, tags are often placed out of sight 
(bottom or rear of devices), which precludes immediate use 
in AR applications. To make tags less obtrusive, researchers 
have explored embedding subtle patterns into existing sur-
faces, such as floors and walls [30].  

Light-Based Markers 
Many light-based schemes have been previously considered. 
For example, IRCube [11] studded a device with infrared 
LEDs and demonstrated position and orientation tracking. 
Bokodes [23] used tiny lenslet-covered illuminated tags that 
can be resolved when imaged by an out-of-focus camera. 
Markers or patterns can also be projected onto the environ-
ment, such as dot patterns [32] and m-sequences [35]. All of 
these approaches require special hardware and do not 
demonstrate dynamic data payloads. 

Rarer are systems that support dynamic payloads. For exam-
ple, SideBySide [33] digitally projected infrared ARTags 
onto the environment, which could e.g., identify users in 
multiplayer projected AR games. In CapCam [36], 
smartphones were placed onto large interactive screens; 
small patches were used to encoded data as colored se-
quences that were read by phones’ rear-facing cameras. 
Grundhöfer et al. [8] used a 120Hz digital screen with a syn-
chronized camera to capture fiducial tags that appeared on 
specific frames. Prakash [28] inverted this approach, project-
ing a structured light pattern onto photosensors, which track 
themselves within a projected volume.  

LightAnchors is closer in spirit to approaches that use active 
point lights as markers. ID CAM [21] proposed using LEDs 
as beacons, blinking at 4 kHz and sensed with a specially-
designed high-speed camera. Similar approaches have been 
used to track drones [2] and capture human motion [12]. To 
support tracking of many tags in a scene, [12] synchronized 
LEDs with RF communication. Lastly, [4]describes a 
smartphone-based system that tracks LEDs using the camera 
and demonstrates transmission speeds of ~1 bit/sec for en-
hanced interactions with toys.  

Marker-Less Strategies 
Augmented reality systems can also track objects using in-
nate features. Today, there are many object-recognition com-
puter vision libraries that can track objects without special 
tags or markings (e.g., [9]). Snap-To-It [6] uses such 

capability to recognize objects using a smartphone camera, 
after which interactivity can be offered (see also the commer-
cial Vuforia augmented reality software toolkit [24]). How-
ever, these systems require some form of preregistration of 
the to-be-recognized object or scene, and the object itself 
cannot transfer information beyond its identify.  
Visible Light Communication with Commodity Devices 
With specialized equipment, it is possible to transmit data at 
high speeds with visible light (VLC). For instance, the IEEE 
802.15.7 standard [26] allows LEDs to transmit data at up to 
96 Mbit/s using specialized photosensors to form line-of-
sight wireless networks. More relevant to LightAnchors are 
VLC-style techniques that use commodity cameras, for e.g., 
room-level localization [25]. These VLC systems most often 
use diffuse or ambient modulated light and the rolling shutter 
operation of cameras to receive data faster than the full-frame 
rate of the camera [5, 13]. However, this approach does not 
work as well for point light sources (which only cover a small 
portion of the image at typical distances), nor when many 
lights are active in a scene.  
IMPLEMENTATION 
At a high level, for every incoming frame of video, our algo-
rithm creates an image pyramid, such that lights – big or 
small, close or far – are guaranteed to be contained within a 
single pixel at least one level. Our algorithm then searches 
for candidate light anchors using a max-pooling template that 
finds bright pixels surrounded by darker pixels. We then 
track candidate anchors over frames, decoding a blinked bi-
nary pattern using an adaptive threshold. To drop false posi-
tive detections, only candidates with the correct preamble are 
accepted, after which their data payloads can be decoded. 
This process allows us to robustly track and decode multiple 
LightAnchors simultaneously.   
Encoding & Point Lights 
We encode all data as a binary sequence, prefixed with a 
known pattern. Since we repeatedly transmit the same mes-
sage, the prefix appears at both the beginning and end of 
every transmission, which makes payload segmentation 
straightforward. We modulate lights with this pattern be-
tween high and low intensities at 120 FPS using a microcon-
troller (Teensy 3.6 or Arduino Mega) and its digital-to-ana-
log converter (DAC). This blinking speed is right at humans’ 
flicker fusion threshold, and the flashing is generally imper-
ceptible, but depends on the particular payload. 

Unlike prior approaches that synchronized light modulation 
with e.g., RF triggers [12], our lights and smartphones are 
totally unsynchronized. This means it is possible for the cam-
era shutter to align with transitions in our blinked pattern, 
which at best reduces SNR, and at worse, means the pattern 
is unresolvable. To recover from this type of failure, we 
phase shift our transmitted signal by 36° after each transmis-
sion. We used basic binary transmission as a proof of con-
cept, but LightAnchors could also be extended to use multi-
ple illumination levels and colors. 



Frame Capture 
In our proof-of-concept iOS app, we use the AVCaptureSes-
sion API to grab video frames and OpenCV for image pro-
cessing. We enqueue all video frames, which are consumed 
asynchronously by our detection-tracking-decoding thread 
(described in subsequent sections). Our software runs on the 
iPhone 7 and X, which can capture video frames at 240 FPS. 
In general, this is too much pixel data for our current imple-
mentation to process in real time at high video resolutions, 
and so we generally use 720p video. Only at 320x180 can we 
process a 240 FPS image stream. When frames are scaled, 
we use iOS’s optimized CoreGraphics API.  

Detection  
Our LightAnchor detection algorithm is designed to have 
high recall. Given a raw camera image, we first convert to 
grayscale and build an image pyramid (five layers, scaling 
by half). We model LightAnchors as bright spots surrounded 
by darker regions. Specifically, for each pixel, we compute 
the difference between the center pixel value and the maxi-
mum value of all pixels in a 7×7 diamond perimeter. We then 
threshold this result at every pixel and at every pyramid level, 
which produces an array of candidate anchors for each in-
coming frame of video. Finally, we flatten results from all 
pyramid layers so that candidate anchors are in the coordi-
nate space of the highest resolution pyramid.  
Tracking 
Our detection process passes all candidate anchors to our 
tracker on every frame, which must be computationally in-
expensive in order to maintain a high frame rate. First, we 
merge proximate candidate anchors – ones too close to be 
separate LightAnchors (this often happens when a LightAn-
chor is detected at multiple pyramid levels). We then attempt 
to pair all current candidates with candidates from the previ-
ous frame using a greedy Euclidean distance matcher with a 
threshold to discard unlikely pairings. If a match is found, 
the current point is linked to the previous candidate anchor, 
forming a historical linked list. Our tracker also uses a time-
to-live of five frames to compensate for momentary losses in 
tracking (e.g., image noise, momentary occlusion, loss of fo-
cus). Although this algorithm is basic, it is computationally 
inexpensive and works well in practice due to our high frame 
rate.  

Decoding  
After each frame is tracked, we attempt to decode all candi-
date anchors. As noted above, our tracker keeps a history of 
candidate anchors over time, which provides a sequence of 
intensity values. Rather than use only the center pixel value, 
we average over a small region, which we found to be less 
sensitive to camera noise and sub-pixel aliasing during mo-
tion. To convert the analog light intensity signal into a binary 
sequence, we use a dynamic threshold. We purposely employ 
preambles that contain both 1’s and 0’s (i.e., high and low 
brightness), which allows us to find the midpoint of the min 
and max intensity values at both the beginning and end of a 
transmission. We linearly interpolate between these two mid-
points (Figure 2) to produce a binary string. This 

compensations for low-frequency changes in illumination 
(e.g., moving cloud cover, user motion, camera auto-expo-
sure adjustment). We then test for the presence of our known 
pre/postamble. If this is missing, the candidate is not decoded 
(i.e., we might be too early or late, or the tracked point is a 
static light and not a modulated light anchor). However, if 
the pre/postamble is correct, the data payload is saved to the 
anchor.  

An interesting corner case that must be handled are reflec-
tions from LightAnchors (e.g., glints off specular objects, 
which also appear as point lights). Like actual LightAnchors, 
these blink valid sequences and are decoded “correctly” by 
our pipeline. However, they almost always have a lower 
range of intensities (as they are secondary sources of light) 
and we use this fact to filter them. More specifically, if two 
candidate anchors are found to have valid, but identical se-
quences in the same frame, we only accept the one with 
higher signal variance.  

Performance Analysis 
We profiled our implementation using Xcode on both a iPh-
one 7 and iPhone X. We tested different base resolutions 
(i.e., largest pyramid size), and for each, ran three trials of 
500 frames each. Data was processed at 120 FPS, except for 
320x180, which was processed at 240 FPS. The combined 
results are shown in Figure 3. Although reducing the image 
resolution greatly improves processing time, we found that 
scaling the image becomes a major bottleck (often making 
up 50% of the processing). Even though we used the highly 
optimized iOS CoreGraphics API, we suspect that this bot-
tleneck could be greatly mitigated with better GPU accelera-
tion, which could allow LightAnchor detection to run at 240 
FPS or more.  

EVALUATION   
To evaluate the robustness of our approach, we tested point 
lights of different size, across varying rooms, lighting condi-
tions, and sensing distances. We also tested accuracy while 
the device was still and held by a user while walking. We 
now describe this procedure and results in detail. 

 
Figure 2. Light intensity over time for an example LightAn-

chor with 6-bit preamble (101100), 10-bit payload 
(0010101100) and 6-bit “postamble” (i.e., preamble of next 
transmission). Dashed line is interpolated binary threshold. 

 

 

. Dashed line is interpolated threshold for binary decoding. 
The visualized signal is a  

 



Apparatus & Procedure 
We captured study data using an iPhone 7 (720p at 120 FPS) 
in three environments: workshop, classroom and office. In 
each of these settings, we varied the lighting condition: arti-
ficial light only (mean 321 lux), artificial light + diffuse sun-
light (mean 428 lux) and lights off (mean 98 lux). We cap-
tured data using a tripod (i.e., smartphone held still) and also 
while walking slowly (~1 m/s, to induce some motion blur). 
We recorded approximately one second of video data at 2, 4, 
6, 8, 10 and 12 meters. For our still condition, we used a sur-
veyor’s rope to mark distances, and for our walking condi-
tion, we used a 50cm printed ArUco tag for continuous dis-
tance tracking (accepting frames within ±0.5m). Within each 
setting, we used two exemplar point lights: a standard 3mm 
LED and a larger 100x100mm LED matrix. These were 
placed 1.5m from the ground on a tripod and separated by 
120cm. These two lights simultaneously emitted different 
(but known) 16-bit LightAnchors, driven by a single Arduino 
Mega. For all conditions, the LightAnchors pipeline ran with 
a base pyramid size of 1280x720, with 6-bit pre/postambles 
and 10-bit payloads. 
LightAnchor Detection  
Our detection rate did not change substantially across study 
conditions, and so we combine detection results for brevity. 
On average, our system found 50.8 candidate anchors (9.0 
SD) in each frame. Of course, only two of these were actual 
LightAnchors, and our system detected these in all cases 
(i.e., a true positive rate of 100%).  
After the pre/postamble filtering process, the true positive 
rate was still 100%, but our system found 3.1% false 

positives. The likelihood of any random pixel in the environ-
ment matching our pre/postamble is fairly low. Upon closer 
analysis of the video data, it appears most of these were ac-
tually small reflections of our actual LightAnchors, and thus 
transmitting correct patterns (an effect discussed in our De-
coding section above). If we apply our variance filter, accept-
ing only the best signal, it reduces false positives to 0.4% and 
true positives to 99.6%.  

Bit Error Rate 
Across all conditions and distances, we found a mean bit er-
ror rate (BER) of 5.2%, or roughly 1 error in every 20 trans-
mitted bits. Note that this figure includes the 0.4% of false 
positives that made it through our various filtering stages. 
Overall, this level of corruption is tolerable and can be miti-
gated with standard error correction techniques, such as 
Hamming codes [10]. With respect to light size, the small 
LED had 6.5% BER, while the larger LED had 3.8% (Figure 
4, left). Unsurprisingly, BER was higher while walking 
(mean 7.7%) than when the camera was still (2.7%), as seen 
in Figure 4 middle. Likewise, errors increased as ambient 
brightness increased (Figure 4, right). We also computed 
BER across the different base resolutions used in our perfor-
mance analysis (Figure 3), and it is clear that high resolution 
(at least 720p) is needed to detect, track and decode LightAn-
chors accurately.  

Recognition Latency 
There are several effects that can cause incorrect rejection of 
LightAnchors, including poor tracking, motion blur, subop-
timal camera-light synchronization, camera sensor noise, and 
variations in ambient lighting. As discussed above, it is rare 

 
Figure 3. Compute time per frame on iPhone X and iPhone 7 at different input resolutions.  

Bit error rate (BER) results are computed from data collected in our main evaluation.  

 

 

 

 
Figure 4. Bit error rate (BER) across different study conditions and distances.  

 

 
 



for our system to completely miss a visible LightAnchor, but 
it is common for a LightAnchors to have to transmit several 
times before being recognized. To quantity this, we used our 
collected data to compute the average time required to detect, 
track, and decode a LightAnchor. To do this, we started our 
detection pipeline at random offsets in our video data and 
recorded how long it took until LightAnchors were success-
fully decoded.  

Across all conditions, we found a mean recognition time of 
464 ms. As our test LightAnchors were 22 bits long (6 bit 
preamble, 10 bit payload, 6 bit postamble), they take a mini-
mum of 183ms to transmit at 120 FPS. Because there is no 
synchronization, detection of a LightAnchor is almost cer-
tainly going to start somewhere in the middle of a transmis-
sion, meaning the system will have to wait on average 92 ms 
for the start of a sequence. The remaining 373 ms means that, 
on average, LightAnchors had to transmit twice before being 
recognized. We note that this latency varies across condi-
tions, for example, mean recognition latency is 312 ms when 
the camera was held still (i.e., the first full transmission is 
often successful) vs. 615 ms when the user was walking (~3 
transmissions before recognition). 

PAYLOAD TYPES & EXAMPLE USES  
The data payload of LightAnchors can be used in three dis-
tinct ways: fixed payloads, dynamic payloads, and connec-
tion payloads. To illustrate these different options, as well as 
to highlight the potential utility of LightAnchors, we created 
eleven demo applications. We note that these examples 
would require no a priori setup of devices and smartphones, 
and would allow anyone with the LightAnchors App on their 
phone to begin instantly interacting with objects in AR. 
Fixed Payloads 
The simplest use of LightAnchors is a fixed payload (similar 
to fiducial markers). Although this could contain plain text, 
the limited bitrate of LightAnchors makes this impractical. 
Instead, we envision transmission of an ID, which permits 
lookup through a cloud service, after which larger payloads 
(e.g., restaurant name, opening hours, menu, coupons, etc.) 
could be fetched over a faster connection (e.g., cellular, 
WiFi). By utilizing geolocation in the lookup, it may be pos-
sible to use fairly small IDs (e.g., 16 bits). 
As a demonstration of a fixed payload, we instrumented a 
street parking meter (Figure 5, left) with a light that transmits 
its enforcement zone ID (from which the rate schedule could 

 
Figure 5. Example LightAnchor applications with fixed data payloads. Left: Parking meter displaying current rate.  

Center: Exterior light fixture denoting building operating hours. Right: Conference speaker phone displaying call-in number. 

 

 

 
Figure 6. Example uses of LightAnchors with dynamic data payloads. Left: Smoke alarm that displays its real-time battery and 
alarm status. Center: Power strip that transmits its power usage. Right: WiFi Router displaying its SSID and guest password. 

 

 



be retrieved). Similarly, we modified an outdoor entrance 
light to output a fixed UID (Figure 5, center); the summoned 
LightAnchor displays the building name (Department of Mo-
tor Vehicles), its current status (open), and closing time 
(5pm). Lastly, we modified a conference room phone demo 
that conveniently displays its call-in number (Figure 5, 
right).  

Dynamic Payloads  
More interesting are dynamic payloads, which contain a 
fixed UID that denotes the object, along with a dynamic 
value. For example, a glue gun (object identifier) and its live 
temperature (dynamic value), seen in Figure 1. A typical glue 
gun contains no digital components, and thus in practice, 
would require the addition of a microcontroller and thermis-
tor, costing as little as $1 USD [22]. We also created two 
other demo devices that generally lack compute: a fire alarm 
that reports its operating status and an electrical strip that re-
ports its power draw (Figure 6, left and center).  

Of course, many devices already contain microprocessors 
that can control status lights and could be LightAnchor-ena-
bled with a firmware update. For example, a networked se-
curity camera could be updated to use its recording light to 
share its privacy policy (Figure 1), and a router could shares 
its SSID and a randomly generated guest password via its 
status lights (Figure 6, right). 

Connection Payloads  
Finally, LightAnchor payloads could be used to provide con-
nection information. For example, a smart light switch could 
provide an IP address, allowing smartphones to open a socket 
and take control (Figure 7, left). To mitigate malicious be-
havior, a token with a short time-to-live could also be trans-
mitted to ensure that users have at least line-of-sight. An in-
ternet connection could also allow devices to transmit a cus-
tom control interface, for example, a small HTML/CSS app. 
For instance, upon connecting to a smart thermostat, a simple 
temperature control widget could be downloaded and dis-
played in AR (Figure 7, center). As a final demo, we created 
a mock payment terminal (Figure 7, right) that could allow a 

smartphone to connect (securely) over the internet and ena-
ble payment.  

LIMITATIONS  
The biggest drawback of our method is limited bitrate, which 
is chiefly set by smartphone processors and camera FPS. 
This limits our practical payload size and makes our system 
prone to security issues found in schemes such as QR codes 
[16] . Fortunately, high-speed cameras are becoming increas-
ingly commonplace in the market, and some Samsung de-
vices can now capture video at 960 FPS. As camera FPS in-
creases, LightAnchors can blink at higher rates, making the 
data imperceptible irrespective of the data payload and allow 
for much larger payloads. Smartphone processors also con-
tinue to improve, especially GPU performance, which should 
allow us to work with higher video resolutions, which would 
allow for LightAnchor detection at longer ranges.  

There are also challenges in controlling the exposure and fo-
cus of the camera to enable robust tracking. We found the 
automatic camera settings were not ideal for LightAnchors 
(i.e., clipping in dark scenes), and so we had to lock settings 
such as exposure. However, as our user interface is a 
passthrough AR experience, settings that are ideal for 
LightAnchors are not always ideal for a human user. 

Finally, at present, our LightAnchor widgets are flat with re-
spect to the smartphone screen, as a single LightAnchor can-
not provide 3D orientation. However, a known geometry of 
at least three non-planar LightAnchors (e.g., status lights on 
a microwave or WiFi router) could allow for recovery of 
6DOF position in the future. A similar effect might also be 
achieved using techniques such as structure from motion [20] 
and SLAM [17]. Either way, this would produce a more im-
mersive AR effect. 

CONCLUSION 
We have presented our work on LightAnchors, a new ap-
proach for overlaying information and interfaces onto every-
day objects in mobile AR. We take advantage of point lights 
(e.g., LEDs) that already exist in a wide range of products (or 
could be added for a few dollars). We described our imple-
mentation and results from an evaluation, which shows that 

 
Figure 7. Example LightAnchors that use data payloads for connection information. Left: Light switch that offers remote control. 

Center: Thermostat that allows users to configure settings. Right: Terminal that permits payment via smartphone.  

 

 



our approach can be rapid and accurate. We plan to release 
our LightAnchors app on the Apple App Store, as it can run 
on recent iOS devices.  
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