
LightAnchors: Appropriating Point Lights for
Spatially-Anchored Augmented Reality Interfaces

Karan Ahuja Sujeath Pareddy Robert Xiao Mayank Goel Chris Harrison
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

{kahuja, spareddy, brx, mayank, chris.harrison}@cs.cmu.edu

ABSTRACT
Augmented reality requires precise and instant overlay of
digital information onto everyday objects. We present our
work on LightAnchors, a new method for displaying spa-
tially-anchored data. We take advantage of pervasive point
lights – such as LEDs and light bulbs – for both in-view an-
choring and data transmission. These lights are blinked at
high speed to encode data. We built a proof-of-concept ap-
plication that runs on iOS without any hardware or software
modifications. We also ran a study to characterize the perfor-
mance of LightAnchors and built eleven example demos to
highlight the potential of our approach.

Author Keywords
Augmented Reality; Smartphones, Tags, Markers, Visible
Light Communication; Mobile Interaction.

CCS Concepts
Human-centered computing → Human computer interaction
(HCI) → Interaction paradigms → Mixed / augmented reality

INTRODUCTION
Augmented reality (AR) allows for the overlay of digital in-
formation and interactive content onto scenes and objects. In
order to provide tight registration of data onto objects in a
scene, it is most common for markers to be employed. Innu-
merable visual tagging strategies have been investigated in
both academia and industry (e.g., retroreflective stickers,
barcodes, ARToolKit markers [15], ARTags [7], AprilTag
[31], QR Codes [14], and ArUco markers [29]).

In this paper, we present LightAnchors, a new method to dis-
play spatially-anchored data in augmented reality applica-
tions. Unlike most prior tracking methods, which instrument
objects with markers (often large and/or obtrusive), we take
advantage of point lights already found in many objects and
environments. For example, most electrical appliances now
feature small (LED) status lights, and light bulbs are com-
mon in indoor and outdoor settings. In addition to leveraging
these point lights for in-view anchoring (i.e., attaching

information and interfaces to specific objects), we also co-
opt these lights for data transmission, blinking them rapidly
to encode binary data.

Another difference from conventional markers is that
LightAnchors can transmit dynamic payloads, without the
need for WiFi, Bluetooth or indeed, any connectivity. De-
vices need only an inexpensive microcontroller (e.g., [22],
which costs less than $0.50 USD) with the ability to blink a
LED. This could allow “dumb” devices to become smarter
through AR with minimal extra cost (much less than e.g.,
adding a screen to a device). For example, we created a glue
gun that transmits its live temperature (Figure 1). For devices
that already contain a microprocessor, LightAnchors opens a
new information outlet in AR, for example, the LED found
in many security cameras could be used to share the device’s
privacy policy (Figure 1).

As smartphones are the most pervasive AR platform at pre-
sent, we created a proof-of-concept LightAnchors imple-
mentation for iOS. This native application requires no spe-
cial hardware or operating system modifications, and simply
takes advantage of high-speed cameras that have shipped on
recent smartphone models (up to 240 frames per second on
the iPhone 7 and later models). In addition to describing our
algorithm, we also report the findings of a transmission per-
formance study, which tested accuracy at different distances,
with two light sizes, and while held still and in motion. We
conclude by describing ten example applications we built to
illustrate the potential of LightAnchors.

Please do not modify this text block until you receive explicit instructions.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CONF '22, Jan 1 - Dec 31 2022, Authorberg.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-xxxx-yyyy-z/zz/zz…$zz.00.
unique doi string will go here

Figure 1. With LightAnchors, a security camera’s LED can

be used to share its privacy policy, while a hot glue gun trans-
mits its live temperature (close-up of screen in B).

RELATED WORK
LightAnchors overlaps with several disparate literatures, in-
cluding marker-based tracking approaches, marker-less
computer vision techniques, and visible light communica-
tion. We now briefly review these research areas.

Fiducial Markers
There are a wide variety of successful fiducial marking
schemes. For example, ARTags [15] use black-and-white
2D patterns that allow conventional cameras to read a data
payload and also estimate 3D position/orientation of the tag.
Other popular schemes include QR Codes [14], April Tags
[31] and ArUco markers [29]. These printed tags are highly
visible, and thus often obtrusive to the visual design of ob-
jects. In consumer devices, tags are often placed out of sight
(bottom or rear of devices), which precludes immediate use
in AR applications. To make tags less obtrusive, researchers
have explored embedding subtle patterns into existing sur-
faces, such as floors and walls [30].

Light-Based Markers
Many light-based schemes have been previously considered.
For example, IRCube [11] studded a device with infrared
LEDs and demonstrated position and orientation tracking.
Bokodes [23] used tiny lenslet-covered illuminated tags that
can be resolved when imaged by an out-of-focus camera.
Markers or patterns can also be projected onto the environ-
ment, such as dot patterns [32] and m-sequences [35]. All of
these approaches require special hardware and do not
demonstrate dynamic data payloads.

Rarer are systems that support dynamic payloads. For exam-
ple, SideBySide [33] digitally projected infrared ARTags
onto the environment, which could e.g., identify users in
multiplayer projected AR games. In CapCam [36],
smartphones were placed onto large interactive screens;
small patches were used to encoded data as colored se-
quences that were read by phones’ rear-facing cameras.
Grundhöfer et al. [8] used a 120Hz digital screen with a syn-
chronized camera to capture fiducial tags that appeared on
specific frames. Prakash [28] inverted this approach, project-
ing a structured light pattern onto photosensors, which track
themselves within a projected volume.

LightAnchors is closer in spirit to approaches that use active
point lights as markers. ID CAM [21] proposed using LEDs
as beacons, blinking at 4 kHz and sensed with a specially-
designed high-speed camera. Similar approaches have been
used to track drones [2] and capture human motion [12]. To
support tracking of many tags in a scene, [12] synchronized
LEDs with RF communication. Lastly, [4]describes a
smartphone-based system that tracks LEDs using the camera
and demonstrates transmission speeds of ~1 bit/sec for en-
hanced interactions with toys.

Marker-Less Strategies
Augmented reality systems can also track objects using in-
nate features. Today, there are many object-recognition com-
puter vision libraries that can track objects without special
tags or markings (e.g., [9]). Snap-To-It [6] uses such

capability to recognize objects using a smartphone camera,
after which interactivity can be offered (see also the commer-
cial Vuforia augmented reality software toolkit [24]). How-
ever, these systems require some form of preregistration of
the to-be-recognized object or scene, and the object itself
cannot transfer information beyond its identify.
Visible Light Communication with Commodity Devices
With specialized equipment, it is possible to transmit data at
high speeds with visible light (VLC). For instance, the IEEE
802.15.7 standard [26] allows LEDs to transmit data at up to
96 Mbit/s using specialized photosensors to form line-of-
sight wireless networks. More relevant to LightAnchors are
VLC-style techniques that use commodity cameras, for e.g.,
room-level localization [25]. These VLC systems most often
use diffuse or ambient modulated light and the rolling shutter
operation of cameras to receive data faster than the full-frame
rate of the camera [5, 13]. However, this approach does not
work as well for point light sources (which only cover a small
portion of the image at typical distances), nor when many
lights are active in a scene.
IMPLEMENTATION
At a high level, for every incoming frame of video, our algo-
rithm creates an image pyramid, such that lights – big or
small, close or far – are guaranteed to be contained within a
single pixel at least one level. Our algorithm then searches
for candidate light anchors using a max-pooling template that
finds bright pixels surrounded by darker pixels. We then
track candidate anchors over frames, decoding a blinked bi-
nary pattern using an adaptive threshold. To drop false posi-
tive detections, only candidates with the correct preamble are
accepted, after which their data payloads can be decoded.
This process allows us to robustly track and decode multiple
LightAnchors simultaneously.
Encoding & Point Lights
We encode all data as a binary sequence, prefixed with a
known pattern. Since we repeatedly transmit the same mes-
sage, the prefix appears at both the beginning and end of
every transmission, which makes payload segmentation
straightforward. We modulate lights with this pattern be-
tween high and low intensities at 120 FPS using a microcon-
troller (Teensy 3.6 or Arduino Mega) and its digital-to-ana-
log converter (DAC). This blinking speed is right at humans’
flicker fusion threshold, and the flashing is generally imper-
ceptible, but depends on the particular payload.

Unlike prior approaches that synchronized light modulation
with e.g., RF triggers [12], our lights and smartphones are
totally unsynchronized. This means it is possible for the cam-
era shutter to align with transitions in our blinked pattern,
which at best reduces SNR, and at worse, means the pattern
is unresolvable. To recover from this type of failure, we
phase shift our transmitted signal by 36° after each transmis-
sion. We used basic binary transmission as a proof of con-
cept, but LightAnchors could also be extended to use multi-
ple illumination levels and colors.

Frame Capture
In our proof-of-concept iOS app, we use the AVCaptureSes-
sion API to grab video frames and OpenCV for image pro-
cessing. We enqueue all video frames, which are consumed
asynchronously by our detection-tracking-decoding thread
(described in subsequent sections). Our software runs on the
iPhone 7 and X, which can capture video frames at 240 FPS.
In general, this is too much pixel data for our current imple-
mentation to process in real time at high video resolutions,
and so we generally use 720p video. Only at 320x180 can we
process a 240 FPS image stream. When frames are scaled,
we use iOS’s optimized CoreGraphics API.

Detection
Our LightAnchor detection algorithm is designed to have
high recall. Given a raw camera image, we first convert to
grayscale and build an image pyramid (five layers, scaling
by half). We model LightAnchors as bright spots surrounded
by darker regions. Specifically, for each pixel, we compute
the difference between the center pixel value and the maxi-
mum value of all pixels in a 7×7 diamond perimeter. We then
threshold this result at every pixel and at every pyramid level,
which produces an array of candidate anchors for each in-
coming frame of video. Finally, we flatten results from all
pyramid layers so that candidate anchors are in the coordi-
nate space of the highest resolution pyramid.
Tracking
Our detection process passes all candidate anchors to our
tracker on every frame, which must be computationally in-
expensive in order to maintain a high frame rate. First, we
merge proximate candidate anchors – ones too close to be
separate LightAnchors (this often happens when a LightAn-
chor is detected at multiple pyramid levels). We then attempt
to pair all current candidates with candidates from the previ-
ous frame using a greedy Euclidean distance matcher with a
threshold to discard unlikely pairings. If a match is found,
the current point is linked to the previous candidate anchor,
forming a historical linked list. Our tracker also uses a time-
to-live of five frames to compensate for momentary losses in
tracking (e.g., image noise, momentary occlusion, loss of fo-
cus). Although this algorithm is basic, it is computationally
inexpensive and works well in practice due to our high frame
rate.

Decoding
After each frame is tracked, we attempt to decode all candi-
date anchors. As noted above, our tracker keeps a history of
candidate anchors over time, which provides a sequence of
intensity values. Rather than use only the center pixel value,
we average over a small region, which we found to be less
sensitive to camera noise and sub-pixel aliasing during mo-
tion. To convert the analog light intensity signal into a binary
sequence, we use a dynamic threshold. We purposely employ
preambles that contain both 1’s and 0’s (i.e., high and low
brightness), which allows us to find the midpoint of the min
and max intensity values at both the beginning and end of a
transmission. We linearly interpolate between these two mid-
points (Figure 2) to produce a binary string. This

compensations for low-frequency changes in illumination
(e.g., moving cloud cover, user motion, camera auto-expo-
sure adjustment). We then test for the presence of our known
pre/postamble. If this is missing, the candidate is not decoded
(i.e., we might be too early or late, or the tracked point is a
static light and not a modulated light anchor). However, if
the pre/postamble is correct, the data payload is saved to the
anchor.

An interesting corner case that must be handled are reflec-
tions from LightAnchors (e.g., glints off specular objects,
which also appear as point lights). Like actual LightAnchors,
these blink valid sequences and are decoded “correctly” by
our pipeline. However, they almost always have a lower
range of intensities (as they are secondary sources of light)
and we use this fact to filter them. More specifically, if two
candidate anchors are found to have valid, but identical se-
quences in the same frame, we only accept the one with
higher signal variance.

Performance Analysis
We profiled our implementation using Xcode on both a iPh-
one 7 and iPhone X. We tested different base resolutions
(i.e., largest pyramid size), and for each, ran three trials of
500 frames each. Data was processed at 120 FPS, except for
320x180, which was processed at 240 FPS. The combined
results are shown in Figure 3. Although reducing the image
resolution greatly improves processing time, we found that
scaling the image becomes a major bottleck (often making
up 50% of the processing). Even though we used the highly
optimized iOS CoreGraphics API, we suspect that this bot-
tleneck could be greatly mitigated with better GPU accelera-
tion, which could allow LightAnchor detection to run at 240
FPS or more.

EVALUATION
To evaluate the robustness of our approach, we tested point
lights of different size, across varying rooms, lighting condi-
tions, and sensing distances. We also tested accuracy while
the device was still and held by a user while walking. We
now describe this procedure and results in detail.

Figure 2. Light intensity over time for an example LightAn-

chor with 6-bit preamble (101100), 10-bit payload
(0010101100) and 6-bit “postamble” (i.e., preamble of next
transmission). Dashed line is interpolated binary threshold.

. Dashed line is interpolated threshold for binary decoding.
The visualized signal is a

Apparatus & Procedure
We captured study data using an iPhone 7 (720p at 120 FPS)
in three environments: workshop, classroom and office. In
each of these settings, we varied the lighting condition: arti-
ficial light only (mean 321 lux), artificial light + diffuse sun-
light (mean 428 lux) and lights off (mean 98 lux). We cap-
tured data using a tripod (i.e., smartphone held still) and also
while walking slowly (~1 m/s, to induce some motion blur).
We recorded approximately one second of video data at 2, 4,
6, 8, 10 and 12 meters. For our still condition, we used a sur-
veyor’s rope to mark distances, and for our walking condi-
tion, we used a 50cm printed ArUco tag for continuous dis-
tance tracking (accepting frames within ±0.5m). Within each
setting, we used two exemplar point lights: a standard 3mm
LED and a larger 100x100mm LED matrix. These were
placed 1.5m from the ground on a tripod and separated by
120cm. These two lights simultaneously emitted different
(but known) 16-bit LightAnchors, driven by a single Arduino
Mega. For all conditions, the LightAnchors pipeline ran with
a base pyramid size of 1280x720, with 6-bit pre/postambles
and 10-bit payloads.
LightAnchor Detection
Our detection rate did not change substantially across study
conditions, and so we combine detection results for brevity.
On average, our system found 50.8 candidate anchors (9.0
SD) in each frame. Of course, only two of these were actual
LightAnchors, and our system detected these in all cases
(i.e., a true positive rate of 100%).
After the pre/postamble filtering process, the true positive
rate was still 100%, but our system found 3.1% false

positives. The likelihood of any random pixel in the environ-
ment matching our pre/postamble is fairly low. Upon closer
analysis of the video data, it appears most of these were ac-
tually small reflections of our actual LightAnchors, and thus
transmitting correct patterns (an effect discussed in our De-
coding section above). If we apply our variance filter, accept-
ing only the best signal, it reduces false positives to 0.4% and
true positives to 99.6%.

Bit Error Rate
Across all conditions and distances, we found a mean bit er-
ror rate (BER) of 5.2%, or roughly 1 error in every 20 trans-
mitted bits. Note that this figure includes the 0.4% of false
positives that made it through our various filtering stages.
Overall, this level of corruption is tolerable and can be miti-
gated with standard error correction techniques, such as
Hamming codes [10]. With respect to light size, the small
LED had 6.5% BER, while the larger LED had 3.8% (Figure
4, left). Unsurprisingly, BER was higher while walking
(mean 7.7%) than when the camera was still (2.7%), as seen
in Figure 4 middle. Likewise, errors increased as ambient
brightness increased (Figure 4, right). We also computed
BER across the different base resolutions used in our perfor-
mance analysis (Figure 3), and it is clear that high resolution
(at least 720p) is needed to detect, track and decode LightAn-
chors accurately.

Recognition Latency
There are several effects that can cause incorrect rejection of
LightAnchors, including poor tracking, motion blur, subop-
timal camera-light synchronization, camera sensor noise, and
variations in ambient lighting. As discussed above, it is rare

Figure 3. Compute time per frame on iPhone X and iPhone 7 at different input resolutions.

Bit error rate (BER) results are computed from data collected in our main evaluation.

Figure 4. Bit error rate (BER) across different study conditions and distances.

for our system to completely miss a visible LightAnchor, but
it is common for a LightAnchors to have to transmit several
times before being recognized. To quantity this, we used our
collected data to compute the average time required to detect,
track, and decode a LightAnchor. To do this, we started our
detection pipeline at random offsets in our video data and
recorded how long it took until LightAnchors were success-
fully decoded.

Across all conditions, we found a mean recognition time of
464 ms. As our test LightAnchors were 22 bits long (6 bit
preamble, 10 bit payload, 6 bit postamble), they take a mini-
mum of 183ms to transmit at 120 FPS. Because there is no
synchronization, detection of a LightAnchor is almost cer-
tainly going to start somewhere in the middle of a transmis-
sion, meaning the system will have to wait on average 92 ms
for the start of a sequence. The remaining 373 ms means that,
on average, LightAnchors had to transmit twice before being
recognized. We note that this latency varies across condi-
tions, for example, mean recognition latency is 312 ms when
the camera was held still (i.e., the first full transmission is
often successful) vs. 615 ms when the user was walking (~3
transmissions before recognition).

PAYLOAD TYPES & EXAMPLE USES
The data payload of LightAnchors can be used in three dis-
tinct ways: fixed payloads, dynamic payloads, and connec-
tion payloads. To illustrate these different options, as well as
to highlight the potential utility of LightAnchors, we created
eleven demo applications. We note that these examples
would require no a priori setup of devices and smartphones,
and would allow anyone with the LightAnchors App on their
phone to begin instantly interacting with objects in AR.
Fixed Payloads
The simplest use of LightAnchors is a fixed payload (similar
to fiducial markers). Although this could contain plain text,
the limited bitrate of LightAnchors makes this impractical.
Instead, we envision transmission of an ID, which permits
lookup through a cloud service, after which larger payloads
(e.g., restaurant name, opening hours, menu, coupons, etc.)
could be fetched over a faster connection (e.g., cellular,
WiFi). By utilizing geolocation in the lookup, it may be pos-
sible to use fairly small IDs (e.g., 16 bits).
As a demonstration of a fixed payload, we instrumented a
street parking meter (Figure 5, left) with a light that transmits
its enforcement zone ID (from which the rate schedule could

Figure 5. Example LightAnchor applications with fixed data payloads. Left: Parking meter displaying current rate.

Center: Exterior light fixture denoting building operating hours. Right: Conference speaker phone displaying call-in number.

Figure 6. Example uses of LightAnchors with dynamic data payloads. Left: Smoke alarm that displays its real-time battery and
alarm status. Center: Power strip that transmits its power usage. Right: WiFi Router displaying its SSID and guest password.

be retrieved). Similarly, we modified an outdoor entrance
light to output a fixed UID (Figure 5, center); the summoned
LightAnchor displays the building name (Department of Mo-
tor Vehicles), its current status (open), and closing time
(5pm). Lastly, we modified a conference room phone demo
that conveniently displays its call-in number (Figure 5,
right).

Dynamic Payloads
More interesting are dynamic payloads, which contain a
fixed UID that denotes the object, along with a dynamic
value. For example, a glue gun (object identifier) and its live
temperature (dynamic value), seen in Figure 1. A typical glue
gun contains no digital components, and thus in practice,
would require the addition of a microcontroller and thermis-
tor, costing as little as $1 USD [22]. We also created two
other demo devices that generally lack compute: a fire alarm
that reports its operating status and an electrical strip that re-
ports its power draw (Figure 6, left and center).

Of course, many devices already contain microprocessors
that can control status lights and could be LightAnchor-ena-
bled with a firmware update. For example, a networked se-
curity camera could be updated to use its recording light to
share its privacy policy (Figure 1), and a router could shares
its SSID and a randomly generated guest password via its
status lights (Figure 6, right).

Connection Payloads
Finally, LightAnchor payloads could be used to provide con-
nection information. For example, a smart light switch could
provide an IP address, allowing smartphones to open a socket
and take control (Figure 7, left). To mitigate malicious be-
havior, a token with a short time-to-live could also be trans-
mitted to ensure that users have at least line-of-sight. An in-
ternet connection could also allow devices to transmit a cus-
tom control interface, for example, a small HTML/CSS app.
For instance, upon connecting to a smart thermostat, a simple
temperature control widget could be downloaded and dis-
played in AR (Figure 7, center). As a final demo, we created
a mock payment terminal (Figure 7, right) that could allow a

smartphone to connect (securely) over the internet and ena-
ble payment.

LIMITATIONS
The biggest drawback of our method is limited bitrate, which
is chiefly set by smartphone processors and camera FPS.
This limits our practical payload size and makes our system
prone to security issues found in schemes such as QR codes
[16] . Fortunately, high-speed cameras are becoming increas-
ingly commonplace in the market, and some Samsung de-
vices can now capture video at 960 FPS. As camera FPS in-
creases, LightAnchors can blink at higher rates, making the
data imperceptible irrespective of the data payload and allow
for much larger payloads. Smartphone processors also con-
tinue to improve, especially GPU performance, which should
allow us to work with higher video resolutions, which would
allow for LightAnchor detection at longer ranges.

There are also challenges in controlling the exposure and fo-
cus of the camera to enable robust tracking. We found the
automatic camera settings were not ideal for LightAnchors
(i.e., clipping in dark scenes), and so we had to lock settings
such as exposure. However, as our user interface is a
passthrough AR experience, settings that are ideal for
LightAnchors are not always ideal for a human user.

Finally, at present, our LightAnchor widgets are flat with re-
spect to the smartphone screen, as a single LightAnchor can-
not provide 3D orientation. However, a known geometry of
at least three non-planar LightAnchors (e.g., status lights on
a microwave or WiFi router) could allow for recovery of
6DOF position in the future. A similar effect might also be
achieved using techniques such as structure from motion [20]
and SLAM [17]. Either way, this would produce a more im-
mersive AR effect.

CONCLUSION
We have presented our work on LightAnchors, a new ap-
proach for overlaying information and interfaces onto every-
day objects in mobile AR. We take advantage of point lights
(e.g., LEDs) that already exist in a wide range of products (or
could be added for a few dollars). We described our imple-
mentation and results from an evaluation, which shows that

Figure 7. Example LightAnchors that use data payloads for connection information. Left: Light switch that offers remote control.

Center: Thermostat that allows users to configure settings. Right: Terminal that permits payment via smartphone.

our approach can be rapid and accurate. We plan to release
our LightAnchors app on the Apple App Store, as it can run
on recent iOS devices.

ACKNOWLEDGMENTS
This research was generously supported with funds from the
CONIX Research Center, one of six centers in JUMP, a Sem-
iconductor Research Corporation (SRC) program sponsored
by DARPA. We are also grateful to Anthony Rowe and his
lab for early brainstorming on this effort.
REFERENCES
[1] Paramvir Bahl, and Venkata N. Padmanabhan.

"RADAR: An in-building RF-based user location and
tracking system." IEEE Infocom. Vol. 2. No. 2000.
INSTITUTE OF ELECTRICAL ENGINEERS INC
(IEEE), 2000. DOI:
https://doi.org/10.1109/INFCOM.2000.832252

[2] Andrea Censi, Jonas Strubel, Christian Brandli, Tobi
Delbruck, and Davide Scaramuzza. "Low-latency lo-
calization by Active LED Markers tracking using a Dy-
namic Vision Sensor." In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 891-
898. IEEE, 2013. DOI:
https://doi.org/10.1109/IROS.2013.6696456

[3] Krishna Chintalapudi, Anand Padmanabha Iyer, and
Venkata N. Padmanabhan. 2010. Indoor localization
without the pain. In Proceedings of the sixteenth an-
nual international conference on Mobile computing
and networking (MobiCom '10). ACM, New York,
NY, USA, 173-184. DOI:
https://doi.org/10.1145/1859995.1860016

[4] Giorgio Corbellini, Kaan Aksit, Stefan Schmid, Stefan
Mangold, and Thomas R. Gross. "Connecting networks
of toys and smartphones with visible light communica-
tion." IEEE Communications Magazine 52, no. 7
(2014): 72-78. DOI:
https://doi.org/10.1109/MCOM.2014.6852086

[5] Christos Danakis, Mostafa Afgani, Gordon Povey, Ian
Underwood, and Harald Haas. "Using a CMOS camera
sensor for visible light communication." In 2012 IEEE
Globecom Workshops, pp. 1244-1248. IEEE, 2012.

[6] Adrian A. de Freitas, Michael Nebeling, Xiang 'Antho-
ny' Chen, Junrui Yang, Akshaye Shreenithi Kirupa
Karthikeyan Ranithangam, and Anind K. Dey. 2016.
Snap-To-It: A User-Inspired Platform for Opportunistic
Device Interactions. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI '16). ACM, New York, NY, USA, 5909-5920.
DOI: https://doi.org/10.1145/2858036.2858177

[7] Mark Fiala. "ARTag, a fiducial marker system using
digital techniques." In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR'05), vol. 2, pp. 590-596. IEEE, 2005.

[8] Anselm Grundhöfer, Manja Seeger, Ferry Hantsch, and
Oliver Bimber. 2007. Dynamic Adaptation of Projected

Imperceptible Codes. In Proceedings of the 2007 6th
IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR '07). IEEE Computer
Society, Washington, DC, USA, 1-10. DOI:
https://doi.org/10.1109/ISMAR.2007.4538845

[9] Daniela Hall, Vincent Colin de Verdière, and James L.
Crowley. "Object recognition using coloured receptive
fields." In European conference on computer vision,
pp. 164-177. Springer, Berlin, Heidelberg, 2000.

[10] Richard Hamming. "Error detecting and error correct-
ing codes." The Bell system technical journal, 29, no. 2
(1950): 147-160.

[11] Seongkook Heo, Jaehyun Han, Sangwon Choi,
Seunghwan Lee, Geehyuk Lee, Hyong-Euk Lee,
SangHyun Kim, Won-Chul Bang, DoKyoon Kim, and
ChangYeong Kim. 2011. IrCube tracker: an optical 6-
DOF tracker based on LED directivity. In Proceedings
of the 24th annual ACM symposium on User interface
software and technology (UIST '11). ACM, New York,
NY, USA, 577-586. DOI:
https://doi.org/10.1145/2047196.2047272

[12] Impulse X2E Motion Capture – PhaseSpace Motion
Capture. Retrieved April 4, 2019 from http://phas-
espace.com/x2e-motion-capture/

[13] Kensei Jo, Mohit Gupta, and Shree K. Nayar. 2016.
DisCo: Display-Camera Communication Using Rolling
Shutter Sensors. ACM Trans. Graph. 35, 5, Article 150
(July 2016), 13 pages. DOI:
https://doi.org/10.1145/2896818

[14] Tai-Wei Kan, Chin-Hung Teng, and Wen-Shou Chou.
2009. Applying QR code in augmented reality applica-
tions. In Proceedings of the 8th International Confer-
ence on Virtual Reality Continuum and its Applications
in Industry (VRCAI '09). ACM, New York, NY, USA,
253-257. DOI:
https://doi.org/10.1145/1670252.1670305

[15] Hirokazu Kato, and Mark Billinghurst. "Marker track-
ing and hmd calibration for a video-based augmented
reality conferencing system." In Proceedings 2nd IEEE
and ACM International Workshop on Augmented Real-
ity (IWAR'99), pp. 85-94. IEEE, 1999. DOI:
https://doi.org/10.1109/IWAR.1999.803809

[16] Amin Kharraz, Engin Kirda, William Robertson, Da-
vide Balzarotti, and Aurélien Francillon. "Optical delu-
sions: A study of malicious QR codes in the wild." In
2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 192-203.
IEEE, 2014. DOI:
https://doi.org/10.1109/DSN.2014.103

[17] Georg Klein, and David Murray. "Parallel tracking and
mapping for small AR workspaces." In Proceedings of
the 2007 6th IEEE and ACM International Symposium
on Mixed and Augmented Reality, pp. 1-10. IEEE
Computer Society, 2007.

[18] Mani Kotaru, Manikanta, and Sachin Katti. "Position
tracking for virtual reality using commodity wifi." Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017. DOI:
https://doi.org/10.1109/CVPR.2017.286

[19] Katharina Krombholz, Peter Fruhwirt, Peter Kiesberg,
Ioannis Kapsalis, Markus Huber, and Edgar Weippl.
"QR code security: A survey of attacks and challenges
for usable security." International Conference on Hu-
man Aspects of Information Security, Privacy, and
Trust. Springer, Cham, 2014.

[20] Johannes L. Schonberger and Jan-Michael Frahm.
"Structure-from-motion revisited." In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4104-4113. 2016.

[21] Nobuyuki Matsushita, Daisuke Hihara, Teruyuki
Ushiro, Shinichi Yoshimura, Jun Rekimoto, and Yoshi-
kazu Yamamoto. 2003. ID CAM: A Smart Camera for
Scene Capturing and ID Recognition. In Proceedings
of the 2nd IEEE/ACM International Symposium on
Mixed and Augmented Reality (ISMAR '03). IEEE
Computer Society, Washington, DC, USA, 227-.

[22] Microchip Technologies Inc. ATtiny10. Retrieved
April 4, 2019 from https://microchip.com/wwwprod-
ucts/en/ATtiny10

[23] Ankit Mohan, Grace Woo, Shinsaku Hiura, Quinn
Smithwick, and Ramesh Raskar. 2009. Bokode: imper-
ceptible visual tags for camera based interaction from a
distance. In ACM SIGGRAPH 2009 papers
(SIGGRAPH '09), Hugues Hoppe (Ed.). ACM, New
York, NY, USA, Article 98, 8 pages. DOI:
https://doi.org/10.1145/1576246.1531404

[24] PTC. Vuforia. Retrieved April 4, 2019 from
https://www.ptc.com/en/products/augmented-reality

[25] Niranjini Rajagopal, Patrick Lazik, and Anthony Rowe.
"Visual light landmarks for mobile devices." In IPSN-
14 IEEE proceedings of the 13th international sympo-
sium on information processing in sensor networks.
DOI: https://doi.org/10.1109/IPSN.2014.6846757

[26] Sridhar Rajagopal, Richard D. Roberts, and Sang-Kyu
Lim. "IEEE 802.15. 7 visible light communication:
modulation schemes and dimming support." IEEE
Communications Magazine 50, no. 3 (2012): 72-82.
DOI: https://doi.org/10.1109/MCOM.2012.6163585

[27] Short range active marker. Retrieved April 4, 2019.
https://www.qualisys.com/hardware/accessories/active-
markers/short-range-active-marker/

[28] Ramesh Raskar, Hideaki Nii, Bert deDecker, Yuki
Hashimoto, Jay Summet, Dylan Moore, Yong Zhao,
Jonathan Westhues, Paul Dietz, John Barnwell, Shree
Nayar, Masahiko Inami, Philippe Bekaert, Michael

Noland, Vlad Branzoi, and Erich Bruns. 2007. Prakash:
lighting aware motion capture using photosensing
markers and multiplexed illuminators. In ACM
SIGGRAPH 2007. ACM, New York, NY, USA, Article
36. DOI: https://doi.org/10.1145/1275808.1276422

[29] Francisco J. Romero-Ramirez, Rafael Muñoz-Salinas,
and Rafael Medina-Carnicer. "Speeded up detection of
squared fiducial markers." Image and vision Compu-
ting 76 (2018): 38-47.

[30] Shigeru Saito, Atsushi Hiyama, Tomohiro Tanikawa,
and Michitaka Hirose. "Indoor marker-based localiza-
tion using coded seamless pattern for interior decora-
tion." In 2007 IEEE Virtual Reality Conference, pp.
67-74. DOI: https://doi.org/10.1109/VR.2007.352465

[31] John Wang, and Edwin Olson. "AprilTag 2: Efficient
and robust fiducial detection." In 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 4193-4198. IEEE, 2016. DOI:
https://doi.org/10.1109/IROS.2016.7759617

[32] Christian Wienss, Igor Nikitin, Gernot Goebbels, Klaus
Troche, Martin Göbel, Lialia Nikitina, and Stefan Mül-
ler. 2006. Sceptre: an infrared laser tracking system for
virtual environments. In Proceedings of the ACM sym-
posium on Virtual reality software and technology
(VRST '06). ACM, New York, NY, USA, 45-50.
DOI=http://dx.doi.org/10.1145/1180495.1180506

[33] Karl D.D. Willis, Ivan Poupyrev, Scott E. Hudson, and
Moshe Mahler. 2011. SideBySide: ad-hoc multi-user
interaction with handheld projectors. In Proceedings of
the 24th annual ACM symposium on User interface
software and technology (UIST '11). ACM, New York,
NY, USA, 431-440. DOI:
https://doi.org/10.1145/2047196.2047254

[34] H.J. Woltring. New possibilities for human motion
studies by real-time light spot position measurement.
Biotelemetry, 1(3), 1974, 132-146.

[35] Robert Xiao, Chris Harrison, Karl D.D. Willis, Ivan
Poupyrev, and Scott E. Hudson. 2013. Lumitrack: low
cost, high precision, high speed tracking with projected
m-sequences. In Proceedings of the 26th annual ACM
symposium on User interface software and technology
(UIST '13). ACM, New York, NY, USA, 3-12. DOI:
https://doi.org/10.1145/2501988.2502022

[36] Robert Xiao, Scott Hudson, and Chris Harrison. 2016.
CapCam: Enabling Rapid, Ad-Hoc, Position-Tracked
Interactions Between Devices. In Proceedings of the
2016 ACM International Conference on Interactive
Surfaces and Spaces (ISS '16). ACM, New York, NY,
USA. DOI: https://doi.org/10.1145/2992154.2992182

